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PREFACE 

These notes were written for an introductory course in probability 

and statistics at the post-calculus level that was presented during the 

fall term of 1974 to students in the Rand Graduate Institute.  Most of 

the material is devoted to the basic concepts of probability theory that 

are prerequisite to learning mathematical statistics:  probability 

models, random variables, expectation and variance, joint distributions, 

conditioning, correlation, and sampling theory.  Among the distribu- 

tions treated are the binomial, hypergeometric, Poisson, negative bi- 

nomial, normal, gamma, lognormal, chi-square, and bivariate normal. 

The last section of the notes provides an introduction to some of the 

basic notions of parameter estimation:  bias, efficiency, sufficiency, 

completeness, consistency, maximum likelihood, and least-squares estima- 

tion.  Proofs of the Rao-Blackwell, Lehmann-Scheff£, and Gauss-Markov 

Theorems are included. 

The author wishes to thank the following RG1 students for their con- 

structive comments on an earlier version of these notes, their assist- 

ance in eliminating many (but surely not all) of the errors, and their 

patience and goodwill:  Joe Bolten, Tom Carhart, Chris Conover, Wendy 

Cooper, Roger DeBard, Steve Glaseman, Masaaki Komal, Ragnhild Mowill, 

Captain Michael A. Parmentier, and Hadi Soesastro. 

• 
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SECT10N 1. - INTRODUCTION 

Statistics is the branch of applied mathematics that is concerned 

with techniques for (1) collecting, describing, and interpreting data; 

and (2) making decisions and drawing inferences based upon experimental 

evidence.  The term "statistics" is also used to refer to the data 

themselves or numbers calculated from the data, as in the expression 

"lies, damned lies, and statistics."  Sometimes it is not clear which 

usage is intended, as in the old saw, "You can prove anything with 

statistics." At any rate, statistical terminology, measures, and 

analytical techniques have become commonplace in the scientific com- 

munity for describing and interpreting experimental results, and a 

knowledge of statistics has become a prerequisite for scientific re- 

search in many fields. 

As a branch of applied mathematics, statistics relies heavily on 

mathematical models.  The solution to a statistics problem typically 

involves four steps: 

(1) Statement of the real problem. 

(2) Specification of a mathematical model to fit the problem. 

(3) Solution of the mathematical problem. 

(4) Application to the real problem. 

Even if the real problem is completely specified in a particular 

application, the choice of the mathematical model and therefore the 

solution may still be practically unlimited.  Obviously, the mathe- 

matical model should contain the essential features of the physical 

situation, but in most cases this will not lead to a unique specifica- 

tion of the model, and it will be meaningless to refer to a "correct" 

choice.  The final choice of the model will be affected by the intui- 

tion and subject matter knowledge of the model builder and perhaps 

by his ability to carry out the mathematical solution.  For now, let 

us assume the choice has been made. 



-2- 

The next step, solving the mathematical problem, will often be 

straightforward, since the model will probably be chosen using ease 

of solution as a criterion.  The final step, identifying the solu- 

tion of the mathematical model with the answer to the real world 

problem, would appear immediate, but this is often the step where 

the experimenter discovers that his presumably well-conceived mathe- 

matical model yields a solution that cannot possibly satisfy the 

real problem. 

Since the mathematical models for statistical applications are 

primarily probability models and since statistical theory depends 

heavily on probability theory, we shall begin our study of statistics 

with a consideration of those probability concepts that will be 

needed in the sequel.  But, before we proceed along that path, it 

may be helpful to provide a single example of a statistical problem 

to introduce some terminology and to indicate the applicability of the 

models that will be treated. 

Consider the problem of estimating the proportion of some popula- 

tion who share a common attribute based upon a sample of a certain 

size from that population.  For example, the population might consist 

of the voters in a certain state, and the problem might be to esti- 

mate the proportion of the voters who favor a given candidate based 

upon the stated preferences of a relatively small number of voters. 

As a second example, consider estimating the proportion of defective 

transistors produced by a given machine based upon a sample of trans- 

istors chosen from that machine's output.  Here, the population of 

interest is not a group of people, but the set of transistors pro- 

duced by the machine. 

As these examples illustrate, the problem under consideration 

is a common one.  So as not to confuse the issues involved, let us 

pretend that the population of interest is a big can of marbles that 

contains an unknown proportion p of red ones and that the sample 
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will consist of drawing 10 marbles one by one "with replacement" from 

the can.  A sample is said to be drawn with (or without) replacement 

if, after each draw, the marble is (or is not) returned to the can. 

In either case, the sample is said to be a random sample if on each 

draw every marble in the can has the same chance of being selected. 

Your problem:  estimate (guess) the value of p based upon a random 

sample of size 10 taken with replacement. 

As a first step toward specifying a mathematical model to fit 

this situation, note that the data of the experiment is conveniently 

represented by a vector  x ■ (x. , x?, ..., x_0)  where x.  is 1 or 0 

according as the i  marble drawn is red or not.  Thus, if the first 

two marbles drawn are red and the others are all white, then 

x - (1,1,0,0,0,0,0,0,0,0).  This is an example of a sample point, 

i.e., a point that summarizes the data for a particular realization 

of an experiment.  The set of all possible sample points x is called 

the sample space for the experiment.  Your estimate p can be taken 

as any value computed from the vector x.  Three possibilities that 

you might consider are p- « x - E. -. x /10 or perhaps P2 ~ (* + 8*)/10 

or even jL - 1/2, which ignores the data and guesses that p  is 1/2 

no matter what the data indicates. 

Note that the values of p., p2, and p3 are prescribed by the 

formulas above for all sample points x.  These are examples of 

statistics, i.e., numbers calculated from the data points.  These 

particular statistics are also called estimators of the parameter p 

to differentiate them from other statistics in this example, such as 

Dc, , x.. -x«, max (x. ,x«) , and  7xlft + 52.  The values of the 

estimators at a particular sample point are called estimates.  Thus, 

for the sample point (1,1,0,0,0,0,0,0,0,0), the three estimates of p 

are p. ■ 1/5, p2 ■ 0.26, and {L - 1/2.  Of course, if the actual pro- 

portion of red marbles in the can is p ■ 1/2, then p-  provides the 

best estimate of  p.  However our intuition tells us that for values 

of p near 0 or  1  the estimators p.  and p2 will usually pro- 

vide more reliable estimates. 
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As this example indicates, estimates themselves have little in- 

trinsic interest, because one can always specify an estimator that 

will yield any value whatsoever.  In some applications of this model, 

measures of goodness can be prescribed for comparing estimators, in 

which case the problem of choosing an estimator reduces to solving 

the mathematical problem of determining the one that is best in the 

sense of these criteria.  However, such instances are rare.  In most 

applications, clear-cut goodness criteria for estimators do not exist, 

and one is content to report the value of the "usual" estimator of p, 

namely, p * x.  As will be seen later, this estimator has many 

desirable properties and contains all the information about p  that 

is provided by the sample. 

A further discussion of this problem is deferred until the 

elementary probability concepts required for this and other sta- 

tistical problems are treated.  For a nontechnical discussion of 

the nature of statistics, its uses and misuses, see W. Allen Wallis 

and Harry V. Roberts, Statistics, A New Approach, Free Press, Glencoe, 

Illinois, 1956, Chapters 1-3.  For a pleasant diversion that is some- 

what related to the subject, see Darrell Huff, How to Lie with 

Statistics, W. W. Norton and Co., New York, 1954. 
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SECTION II.  -  PROBABILITY MODELS 

References: 

Paul L. Meyer, Introductory Probability and Statistical 
Applications, 2nd Edition, Addison-Wesley, 1970, Chapters 
1 and 2. 

Seymour Lipschutz, Theory and Problems of Probability, 
Schaum*s Outline Series, McGraw Hill, New York, 1968, 
Chapters 1 and 3. 

Emanuel Parzen, Modern Probability Theory and Its Applica- 
tions, Wiley, 1960, Chapter 1. 

William Feller, An Introduction to Probability Theory and 

its Applications, Vol. I, 3rd Edition, Wiley, 1968, 
Chapter 1. 

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw-Hill, 
New York, 1965, pp. 1-40. 

Certain physical experiments have the property that their outcomes 

are somewhat unpredictable and appear to "depend on chance." As examples, 

consider flipping a coin, throwing dice, picking three students by lot 

from a class, spinning a roulette wheel, finding the lifetime of a light 

bulb, and determining the time between successive telephone calls coming 

into an exchange.  If we rule out the uninteresting cases for the moment 

(e.g., two-headed coins or dice controlled electronically so that "7" must 

appear), each of these experiments has the property that the outcome of 

the experiment cannot be predicted with certainty.  Yet, when the experi- 

ment is repeated many times, a certain regularity may appear.  For example, 

if a slightly bent coin is tossed many times, the relative frequency of 

heads, computed after each toss and based upon all the outcomes up to 

that toss, may seem to fluctuate less and less around a particular number, 

say 2/3.  Similarly, the successive averages of the times between in- 

coming telephone calls during a certain part of the day may appear to 

"tend" to a certain number. 
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These experiments also suggest questions about the "chance" or 

"likelihood" or "probability" of certain outcomes or collections of 

outcomes occurring:  "If two dice are tossed, what is the probability 

of getting a total of seven or more?" "If telephone calls come into an 

exchange at an average rate of 4 per minute, what is the probability of 

getting more than 10 in any one minute during the next hour?" "What is 

the probability of drawing a straight flush in poker?" 

Before tackling a formal definition of probability, we shall first 

put the idea of a random experiment into a mathematical framework.  To 

the outcomes of interest of the experiment, we make correspond the elements 

of a set  S called a sample space.  That is, a sample space of an ex- 

periment is a set S such that each element of S corresponds to one of 

the outcomes of the experiment.  For example, if the experiment consists 

of tossing a coin, we might take as our sample space the set 

S - {H, T, E}, i.e.,  S is the set consisting of the three letters H, T, 

and E, where "H" stands for "heads," "T" for "tails," and "E" for "edge." 

As this example shows, the choice of S is somewhat arbitrary. 

As a second example consider the experiment of throwing two dice. 

For convenience let us assume that the dice are painted red and green 

to distinguish them.  Then we can designate the outcome that  3 turns 

up on the red die and 4 turns up on the green die by the pair (3,4). 

Using similar designations for the other possible outcomes, we see that an 

appropriate sample space S for this experiment is the set of pairs (x,y) 

where x and y are integers from 1 to 6.  This sample space can be 

visualized by plotting the pairs as indicated in the figure below.  We can 

write S  in set notation by listing all the elements of  S as follows: 

S « {(1,1), (1,2), (1,3), ..., (6,6)}. 

Alternatively, we can write 

S - {(x,y) : x and y are integers from 1 to 6}, 

which can be read as "S is the set of pairs  (x,y)  such that x and y 

are integers from 1 to 6." 

The elements of a sample space S are sometimes called sample points 

(or Just points), and an event is a collection of sample points, i.e., 

a subset of S.  (For the moment, any subset of S will be referred to 

as an event; later, for technical reasons, the term "event" will be reserved 
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for subsets of  S  in a certain 
class.)  For example, the pair 
(5,2) is a sample point in the 
sample space S above; this can 
be written as (5,2) 6 S, where 
the symbol "€" stands for "is an 
element of" or "belongs to." In 
the game of craps it is of interest 
to consider the event A corre- 
sponding to a total of seven on 
both dice.  (See the figure.)  In 
set notation this event could be 
written as: 

A- {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} 

or       A » {(x,y) : x + y - 7}. 

The event B designated in the figure corresponds to the result that 

the red die turns up 1: 

B * {(x,y) : x - 1}. 

In general, an event A is said to occur if the outcome of the 

experiment corresponds to a sample point  s in S  such that  s 6 A. 

Thus, if A and B are the events defined above and if the result of 

tossing the dice is  5 on the red die and  2 on the green, then A 

occurs but B does not occur.   If A and B are events such that A 

is a subset of B, written A c B or B 3 A,  then clearly whenever A 

occurs,  B must also occur. 

It will be convenient to have notation for the union and intersection 

of any two events A and B.  As the words suggest, the union of A and 

B, denoted by A U B, is the set of all those points that belong to at 

least one of the sets A and B, whereas the intersection of A and B, 

denoted by A 0 B, consists of those points which belong to both A and 

B.  Thus, in the example above, 

A U B - {(x,y) : x - 1 or x+y-7} 

A n B - {(x,y) : x - 1 and x+y-7}- {(1,6)}. 

Note that the event A U B occurs if either A or B occurs (or both), 

whereas A fl B occurs if and only if both A and B occur.  Also note 

that the notions of union and intersection can be extended to more than 

two event8.  For example, if A, B, and C are events, then Ai fl B n C 

is the set of points common to all three sets. Also, if A., A., ... 
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ay 

is a sequence of events, then  U A  (or A. U A. U«.-)  i8 the set 
i»l 

CO . 

of all points that belong to at least one of the sets A , and  n A 
1 i-1 1 

is the set of points that belong to all the sets A.. 

If two events A and B have no points in common, we say that the 

events are disjoint (or mutually exclusive).  Introducing the symbol 0 

to denote the "empty set" (i.e., the set having no elements), we can write 

this as A 0 B * 0. For example, in the dice throwing sample space above, 

if 

A ■ {(x,y) : x + y ■ 7} and 

B « {(1,1), (1,2), (2,1), (6,6)}, then A n B - 0. 

The complement of an event A, denoted by A , is the event consist- 

ing of those points in S that do not belong to A.  Symbolically, 

A - (s : 8 £A}; here, "£' stands for "does not belong to." Note that 

A 0 AC - 0 and A U A° « S. 

Example. Let S be the Cartesian plane, i.e., S - {(x,y) : x and y 
2 2 

are real numbers). Then the "curve" y - x  is the set A - {(x,y) : y - x }, 
2   2 

The set B - {(x,y) : x + y < 1} Is the set of points inside the circle 
2 2 

of radius 1 centered at the origin.  If C ■ ((x,y) : X + y ■ -1}, then 

C - 0. To "solve" the set of equations x + y - 5 and 3x - y - 3 means 

to find the intersection of the sets D ■ {(x,y) : x + y - 5} and E - 

{(x,y) : 3x - y - 3}, namely, D H E - {(2,3)}. The set F - {(x,y) : 

3x - y < 3} is the set of points above the line y ■ 3x - 3; F is the 

set of points on or below this line. Note that F H B - 0. 

We shall want to talk about the probability of any event A, denoted 

by P(A). As this notation suggests, P will be defined as a function of 

events.  To begin with, let us assume that the sample space is finite, 

say S - {s., s?, ..., 8 }.  Then a finite probability model is prescribed 

by assigning numbers p. to the sample points s.  such that 

(a) each p.  is nonnegative, and 

(b) l£.x p± - 1. 
In this case, the probability P(A) of any event A is the sum of the p 's 

assigned to the points that belong to A. 

For example, consider the coin-tossing example where the sample space 

chosen was S ■ {H,T,E}.  In this case, there are only 8 events, 

namely, 
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0, {H}, {T}, {E}, {H,T}, {H,E}, {T,E}, S. 

If the coin is fairly fat and bent a little, an appropriate assignment 

of probabilities p  to the points H, T, and E might be 1/2, 1/3, and 

1/6, in which case the probabilities of the events are 

P(« - 0 P({H,T» - 5/6 

P({H}) - 1/2        P((H,E}) - 2/3 

P({T}) - 1/3        P({T,E» - 1/2 

P((E}) - 1/6 P(S) - 1 

Although we might want to choose another P to fit a particular coin, 

this choice of P is at least consistent with some of our intuitive 

notions about probability, namely: 

1. 0 £ P(A) £ 1 for all events A. 

II.  P(0) - 0, P(S) - 1. 

Ilia.  If A and B are events such that A H B ■ 0, then 

P(A U B) - P(A) + P(B). 

Similarly, if S  is countably infinite, say S - {s.,8.,...}, one 

can assign probabilities to all subsets of S in a consistent way by 

first assigning probabilities p to the points s  where p i 0 and 

Dp. - 1.  Then, for any event A, P(A)  is defined by 

P(A) - E  p . 

It is easily checked that P satisfies conditions I, II, and Ilia above 

as well as: 

III.  If A., A2, ...  are events such that A H A - 0 

whenever i +  j, then 
r» 00 

P( U A.) -  £ P(A ). 
i«l  l    i-1    X 

In general, a set function P on the class of events of a sample 

space S, countable or not, is said to be a probability measure if P 

satisfies conditions I-III above.  (Condition Ilia follows from III by 

setting A3 « A, - ... = 0 in III.)  Its value P(A)  for any event A is 

then called the probability of A.  To sum up the discussion above, 

if the sample space S  is countable (in which case it is said to be 

discrete), P can be prescribed by assigning nonnegative values p. 
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that sum to unity to the individual sample points s., in which case 

the probability of any event is the sum of the probabilities assigned 

to the points that belong to that event. 

Using the properties I-III above, one can easily show that for any 

probability measure P and any events A and B, 

(1) P(AC) - 1 - P(A) 

(2) P(AUB) - P(A) -I- P(B) - PCAHB) 

(3) P(AUB) £ P(A) + P(B) 

(4) If  B C A, P(B) £ P(A). 

For the present we shall assume that P is given or that there is 

a "natural" choice of P suggested by the problem.  Whether the proba- 

bilities P(A)  actually fit the physical situation in some sense or how 

they are measured in practice does not enter the picture at this stage. 

This is analogous to the situation in trigonometry when one is given the 

lengths of the sides of a triangle and is asked to determine the area. 

The case where the physical experiment, when properly viewed, has 

N outcomes which appear to be "equally likely" can be handled immediately 

in this framework, at least theoretically. The key words in such problems 

are "chosen at random," "fair coin," "honest dice," "selected by lot," 

etc.  For such situations, one can choose an appropriate sample space S 

with N points and assign probability 1/N to each point.  Then, for 

any event A,  P(A) - (number of elements in A)/N. 

Example.  (Dice throwing)  If two dice are thrown, find the probability 

of getting a total of (a) seven, (b) four or ten. 

Solution.  The problem remains       6 
unchanged if we consider the dice dis- 
tinguishable, say red and green.  Let     5 
S - {(x,y) : x, y are integers from 1 

to 6}. 4 
For example, the sample point (3,4) 
corresponds to 3 on the red die and 4     3 
on the green.  Assuming equally likely 
outcomes (honest dice), we assign        2 
probability 1/36 to each point . 

1   .   .X .) 

12   3   4   5 
(a) The event A, "seven occurs," contains 6 points, so 

P(A) - 6/36 - 1/6. 

(b) The event B, "four or ten occurs," also contains 6 point«, so 

P(B) - 1/6. 
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Example.  (Coin-tossing)  If a fair coin is tossed four times (or 

if four fair coins are tossed), what is the probability of getting at 

least two heads? 

Solution. An appropriate sample space for a single toss is S - {H,T}. 

he 
1 

4 
For four repetitions of the experiment, we can let S -SXSXSXS- 

{(x1,x2,x3,x4) : x±  £ S}. 

The sample point (T,T,T,H), for example, corresponds to obtaining tails 
A 

on the first three tosses and heads on the fourth. There are 2-16 
4 

points in S , and we assign probability 1/16 to each point. The comple- 

ment A  of the event A, "at least two heads," contains five points: 

(T,T,T,T), (H,T,T,T), (T,H,T,T), (T,T,H,T), (T,T,T,H).  Therefore, 

P(A) - 1 - P(AC) - 1 - (5/16) - 11/16. 

Exercise.  An absent-minded hatcheck girl has 4 hats belonging to 

4 men. Since she cannot remember which hat belongs to each man, she re- 

turns them at random.  Find the probability that 

(a) exactly two men get their own hats back.   Ans. 1/4. 

(b) at least two men get their own hats back.  Ans. 7/24. 

(Set up an appropriate sample space and show the correspondence between 

the sample points and the outcomes of the experiment.) 

As another example of an experiment that fits the equally likely out- 

comes case, consider the experiment of choosing a sample of size r at 

random without replacement from some population of n objects, say 

II - (a..,a«,...,a } where n i r.  For purposes of illustration, let r - 3, 

and suppose that the experiment is conducted by first choosing one of the 

elements a.  in n in such a way that each element has the same chance of 

being chosen.  Then a second element is chosen at random from those remain- 

ing. Finally, a third element is chosen at random from those remaining 

after the first and second have been chosen.  If the elements a_, a7, a 

are chosen in that order, this outcome can be represented by the 3-tuple 

(ar,a7,a.).  Similarly, the result of choosing a sample of size r can be 

represented by an r-tuple  (x.,x_,...,x ) where the components x.  are 

This notation uses an obvious generalization of the notation for the 
Cartesian product C X D of two sets C and D as defined by: 

C X D - {(c,d) : c £ C, d 6 D}. 

Thus, C X D is the set of all ordered pairs having the property that 
the first component belongs to C and the second component belongs to 
D. 
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different elements of the population. This r-tuple is an example of a 

permutation, i.e., an arrangement of r symbols from a set of size n 

in which repetitions are not allowed. 

The number of permutations of n symbols taken r at a time, de- 

noted by P(n,r), can be determined as follows.  The first component of 

the r-tuple can be filled by any of the n symbols, the second by any 

of the n-1 symbols not already used in filling the first component,..., 

the r   by any of the n-(r-l)  symbols not already used in filling the 

first r-1 components.  The total number of different ways of filling 

the r components is 

P(n,r) - n(n-l)(n-2)---(n-r+l) - nl/(n-r)l  for r - 1,2,....n 

where n! - n(n-l)(n-2)•••(3)(2)(1)  and 01 - 1.  The reason for setting 

01 ■ 1 is to have the formula P(n,r) - n!/(n-r)l hold for r - n, in 

which case P(n,r) - n!. 

If the elements in the sample are drawn simultaneously so that the order 

in which the elements are drawn is unknown, the outcomes of the experiment 

can be represented using combinations (subsets) of size r Instead of 

r-tuples.  For example, if r - 3, the subset {a.,a^a7} corresponds to 

drawing the elements a , a_, and a?  in some order.  Note that for each 

subset of size three, say {a.,a,.,a7}, there are 31-6 permutations, 

namely, 

(alfa5,a7), (a^a^a^, (a^a^a^, (a^a^a^, (a?,a1,a5), (a^a^a^. 

Hence, the number of subsets of size three is the number of permutations 

of size three divided by 31.  In general, if  ( )  denotes the number of 

different subsets of size r  from a set of size n, then it follows by 

an argument similar to that above for the case r - 3 that 

0 - ^ - nfer    for -0'1 »• 

Theorem 2-1. Given any set of size n, say n - {a^.-.^a^}, the 

number of ordered r-tuples (permutations) (x.,...,x ) such that the 

x. 's are different elements of II is 

P(n,r) - n(n-l)...(n-r+l)- nl/(n-r)l  for r - l,2,...,n. 

The number of subsets (combinations) of size r from n is 

(n) - nl/rl(n-r)l   for r - 0, 1,..., n. 



-13- 

The following example illustrates how the above results are used 

in sampling inspection. 

Example.  A box contains 12 items of which 9 are defective.  What 

is the probability that a random sample of size 4 taken without replace- 

ment will contain exactly 3 defectives? 

Let the set of 12 items be denoted by Da (Dj,. .. ,D »G^G^G»}. 

Two solutions will be given below, the first using subsets of n of size 

4 as sample points and the second using permutations of size 4 as 

sample points.  Although the sample spaces are quite different, the solu- 

tions to the problem yield the same answer. 

Solution A.  Set  S ■ {x : x is a subset of size 4 from fl}. 

The number of points in S  is 

0S . (12, . 12l_ . 12-11-10-9 m f'b   ^4 ;   4!8!    4-3.2.1    TO" 

Assign probability 1/495 to each point. Let A » {x£S: x contains 3 D's 

and 1 G}. Since #A = (no. of ways of choosing 3 of 9 D*s) x (no. of ways 

of choosing 1 of 3 G's) - C^X*) - 252, 

P(A) - (}><*)/<") - 252/495 « 28/55. 

Solution B.  Set  S - {(x ,x2>x ,x^) ix^Il, X
±^XA     for  ^J}-  Tnen 

#S - P(12,4) - 12-11-10-9.  Let A - {x€S:  exactly three x^s are D's). 

Then 

#A - (no. of ways of choosing 3 of 9 D's) X (no. of ways of choosing 1 

of 3 G*s) X (no. of ways of ordering the four chosen symbols) 

= (3X2)4!, 

so that P(A) - (^)(^)4!/P(12,4) - (^XJ^/Cj2) = 28/55. 

The above argument is easily generalized to prove the following 

theorem: 

Theorem 2-2.  A random sample of size n is taken without replace- 

ment from a lot of N items of which the proportion p are defective. 

The probability p(x)  that the sample will contain exactly x defectives 

is 

P(x) - (JP)(j!x)/(J)   for x - 0,1,2,...,n 

where q ■ 1-p. 
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Now suppose that the sample is taken with replacement.  Then an 

appropriate sample space for the experiment is 

S - {(s^s^. .. ,sn) : s^nh 

Since each component of the sample points can be filled in N ways and 

repetitions are permitted, the number of points in S is N .  Let A 

be the event that exactly x of the items drawn are defective.  The 

number of points in A is the number of ways of choosing x of the n 

components to be filled by Dfs [namely, ( )] multiplied by the number of 

ways of filling the x chosen components with D?s [namely, (Np) ] 

multiplied by the number of ways of filling the remaining n-x components 

with G's [namely 

points in A is 

with G's [namely, (Nq)    where q ■ 1-p].  Therefore, the number of 

and 

#A- (")(Np)*(Nq)n-x , 

P(A) - #A/Nn - (£)pXqn~X    for x - 0,l,2,...,n. 

This proves the following result: 

Theorem 2-3.  If a random sample of size n is taken with replace- 

ment from a lot of N items of which the proportion p are defective, 

then the probability p(x)  that the sample will contain exactly x de- 

fectives is 

p(x) - (^)pXqn~3     for x - 0,1,2,...,n 

where q ■ 1-p. 

As an example of an experiment that requires an infinite sample space, 

imagine a person tossing a fair coin until a head occurs.  The previous 

example suggests using the sample space 

S1 - {(H), (T,H), (T,T,H), .... (T,T,...)} 

where  (T,T,...)  corresponds to never obtaining heads.  A slightly simpler 

sample space S - {1,2,3,...,»}  is obtained by considering the so-called 

"waiting time" for heads, i.e., the number of the trial on which heads 

first occurs.  Since the coin is assumed fair, we let P{1} - 1/2.  Analogy 
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wlth the previous example, where we set P{(T,T,T,H)} - 1/16 - 1/2 

prompts as to set P{4} « 1/2 . Similar considerations for any n 

leads us to set P{n} ■ l/2n for every n.  Then, since 

L P(n} 
n-1 

E 1/2" - 1, 
n-1 

we must have P{°°} - 0, which is consistent with our intuitive notion 

that, if the coin is really fair, it cannot come up tails infinitely 

many times. 

Having assigned probabilities to the elementary events, we can 

compute the probability of any event.  For example, the probability that 

at least 4 tosses are needed is 

1 - P(l,2,3) - 1 - (1/2 + 1/4 + 1/8) - 1/8. 

Also, the probability that the waiting time is odd is 

,-2k+l _   1/2 
PCs : s is odd} - E 

k-1 1-^1174) -2/3 

Example.  According to the U.S. Bureau of the Census (Current Popula- 

tion Reports, Series P-60, No. 78, May 20, 1971), the "distribution" of 

family income in 1970 in the United States was as follows: 

Family Percent of Family Percent of 
Income Families Income Families 

Under $1000 1.6 $7000-7999 6.3 
$1000-1999 3.0 $8000-9999 13.6 
$2000-2999 4.3 $10000-11999 12.7 
$3000-3999 5.0 $12000-14999 14.1 
$4000-4999 5.3 $15000-24999 17.7 
$5000-5999 5.8 $25000-49999 4.1 
$6000-6999 6.0 $50000 up 0.5 

This distribution can be represented graphically using a histogram as 

indicated in the figure below. Note that the heights of the rectangles 

above the income intervals have been chosen in such a way that the areas 

of the rectangles are proportional to the percentages given in the table. 
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Although the reason for doing so will not be apparent at this time, 

one can build a probability model around the distribution above by con- 

sidering the experiment of choosing a family "at random" from the popula- 

tion of all families and recording, as the outcome of the experiment, 

the family income of the family selected.  As a sample space for this 

experiment, we can take the set of nonnegative real numbers:  S - [0,°°).. 

Guided by the table above, we can choose our class of events to be the sets 

0, [0, 1000), [1000, 2000), ..., and unions of these intervals.  To be 

consistent with the table above, we let our probability measure P have 

values: 

P([0,1000)) * .016,  P([1000,2000)) - .030,  etc. 

If a family is chosen at random from the population, the event A corre- 

sponding to selecting one having income less than $3000 is the event 

A - [0,1000) U [1000,2000) U [2000,3000), 

and the probability of this event is 

P(A) - .016 + .030 + .043 - .089, 

which is the proportion of families in the population having income less 

than $3000 according to the Bureau of Census estimates. 
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Note that our class of events did not include every subset of S 

In this case.  Our class of events was restricted to those subsets of S 

whose probabilities were determined either directly from the table or by 

application of the axioms for a probability measure.  The next example 

indicates another reason for considering classes of events that do not 

include all subsets of the sample space. 

Example.  (Spinning a spinner)  Imagine trying to choose a real 

number between 0 and 1 "at random." A hypothetical physical model 

for this would be to spin a perfectly balanced spinner on a circle with 

uniform markings from 0 to 1.  Here, an obvious choice for the sample 

space is  S ■ [0,1], which is uncountable.  In order for the numbers to 

be "equally likely," each singleton set must have probability zero in 

this case, so that the scheme used to assign probabilities in the discrete 

case breaks down.  However, we clearly want to have, for example, P[.3,.4] - .1 

and P(.25,.39] ■ .14, which leads us to assign probability to any interval 

(a,b)  [or (a,b]  or [a,b)  or [a,b]]  its "length" b - a. Follow- 

ing condition III for a probability measure, probability can also be 

assigned to any set which is a countable union of disjoint intervals, and 

this value again coincides with out notion of the "length" of the set. 

Is there a consistent way of defining "length" for every subset of 

[0,1]?  Unfortunately, the answer is no.  (Reference:  H. L. Royden, Real 

Analysis, Macmillan, New York, 1963, p. 43.)  One way out of this difficulty 

is to restrict the class of events, i.e., the class of subsets of  [0,1] 

for which probability is assigned. 

One such restriction is to the smallest class of subsets which con- 

tains the intervals and is closed under countable unions, countable inter- 

sections, and complementation.  For our purposes it suffices to know that 

such a class exists and that there is a way of defining a probability 

measure on this class which corresponds to our intuitive notion of length. 

Note that in this example the probability of any interval  [a,b] with 

0 £ a < b £ 1 can be visualized as the area under the "curve" f(x) « 1 

for 0 £ x £ 1 and between the ordinates x - a and x « b, as illustrated 

in the figure below. 
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The next example shows how other curves can be used to prescribe probabil- 

ity measures on the line. 

Example.  Consider the waiting time in minutes between telephone calls 

coming into an exchange. A histogram based upon the observed waiting times 

for 100 calls coming into the exchange during a certain period of the day 

may look like the figure on the left below.  The figure is intended to de- 

pict a case where 42 out of 100 waiting times were less than one minute. 

.5 

f(x) - f a"*'2 
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Let  S - (0,°°).  Theory to be developed later in this course sug- 

gests that, if the average waiting time between calls is  2 minutes, then 

a reasonably well-fitting model might be obtained by assigning probabil- 

ities to intervals [a,b] using areas under the curve f(x) - (l/2)e~   as is 

illustrated in the figure on the right above.  That is, 

P(U,b]) - Jb(l/2)e-x/2 dx - e"a/2 - e"b/2. 
'a 

The theory will also suggest that, under certain assumptions about the wait- 

ing times between calls, a histogram based upon thousands of waiting times 

(using a finer partition of the x-axis than is indicated in the figure above) 

should fit the curve on the right quite well.  Also, the relative frequency 

of the observed waiting times falling in a particular interval [a,b] should 

be close to the preassigned probability P([a,b]). 

As in the spinner example, the probability of any countable union of 

disjoint subintervals of  S  can be computed by adding the probabilities 

of the individual intervals. As before, technical difficulties preclude 

assigning probabilities to all subsets of S, but we can again restrict our- 

selves to the smallest class of events that contains the intervals and is 

closed under countable set operations (unions, intersections, and comple- 

ments) .  It can be shown that any probability measure on this class of 

sets is completely determined by its values on the intervals.  Thus the 

function f above completely specifies the assignment of probabilities to 

this class of sets through the relationship 

P([a,b]) - jj f(x) dx. 

The function f  is an example of a density function, i.e., a nonnegative 

function whose integral over the real line is equal to one.  Clearly, any 

density function can be uBed to specify a probability measure on the line, 

and it is often convenient in applications of probability to use density 

functions in specifying probability measures (or "distributions") on the 

line. 

The smallest class of subsets of the line that contains the intervals 
and is closed under countable set operations is often referred to as the 
class of Borel sets of the line. 
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SECTIQN III.  -  CONDITIONAL PROBABILITY AND INDEPENDENCE 

References: 

Paul L. Meyer, Introductory Probability and Statistical 
Applications, 2nd Edition, Addison-Wesley, 1970, Chapter 3. 

Seymour Lipschutz, Theory and Problems of Probability, 
Schaum1s Outline Series, McGraw-Hill, New York, 1968, 
Chapter 4. 

Emanuel Parzen, Modern Probability Theory and Its Applica- 
tions, Wiley, 1960, Chapters 2 and 3. 

William Feller, An Introduction to Probability Theory and 
its Applications, Vol. I, 3rd Edition, Wiley, 1968, 
Chapter 5. 

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw- 
Hill, New York, 1965, pp. 41-105. 

Consider choosing a person at random from a population of N voters 

of whom NF are female and Nc are planning to vote for Charles Charmer. 

Let C be the event that the person plans to vote for Charmer and F 

the event that the person is female. Then 

NC NF 
P(C) - ^   and   P(F) « g* . 

Now suppose that we are informed that the person chosen was a woman.  This 

eliminates many sample points as possible outcomes of the experiment, and 

it may not be the case that the proportion of women favoring Charmer is the 

same as the corresponding proportion P(C)  for the entire population.  If 

in fact N   women plan to vote for Charmer, then our revised assessment 

of the probability that the person chosen will vote for Charmer is N /N . 

This ratio is called the conditional probability of C given F and is 

denoted by P(C|F).  If it happens that P(C) - P(C|F), SO that knowing 
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that the event F occurred does not change our assessment of the proba- 

bility of C, then the events C and F are said to be independent. 

These concepts are defined for arbitrary sample spaces below. 

Conditional Probability 

For any two events A and B such that P(B) > 0, the conditional 

probability of A given B is defined by 

P(A|B) - P(A n B)/P(B). 

Note that, for fixed  B, the conditional probability P(A|B)  is pro- 

portional to P(A n B)  with the constant of proportionality chosen to 

make P(B|B) - 1. 

In a finite probability model S - {s. , s?, ..., s } with equally 

likely points, the probability of any event C is  #(C)/n where #(C) 

denotes the number of points in C.  Therefore 

p^Alm . P(AH B)   »(AO B)/n  l(AQ B) 
rUV,ß;     P(B)     #(B)/n      0(B) 

so that in this case P(A|B)  is the proportion of the points in B that 

also belong to A.  In general, P(A|B)  is the proportion of the proba- 

bility assigned to B that also belongs to A. 

It follows immediately from the definition of P(B|A)  that 

P(A H B) - P(A) P(B|A). 

More generally, if A-, A9,...,A.  are any events for which 

P(AjOA^.. •nAk^1) > 0, then 

p(A1nA2n...ruk) - P(A1)P(A2|A1)P(A3|A1HA2) ...p(Ak|Ain...nAk_1). 

These results are sometimes useful in computing probabilities of joint 

occurrences of events when it is obvious what the conditional probabilities 

must be by reference to the reduced sample spaces. 

Exercises. 1. Two fair dice are thrown, one red and one green. What is 

the conditional probability that the sum is ten or more given that (a) an 

observer reported that the red die turned up as a five? (b) a colorblind 

observer has reported that one of the dice turned up a five (not intend- 

ing to exclude the possibility that both turned up fives)? Ans. (a) 1/3, 

(b) 3/11. 
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2. Consider drawing two balls at random without replacement from 

an urn containing six numbered balls where balls 1 to A are white and 

5 and 6 are red.  Let A be the event that the first ball drawn is white 

and B the event that the second ball drawn is white.  Is it not obvious 

from the physical situation that P(B|A) ■ 3/5?  Is it equally obvious 

that P(AJB) = 3/5? Do you believe that P(A) - P(B)?  Set up a sample 

space for this experiment with equally likely outcomes and verify your 

answers. 

3. A batch of 10 light bulbs contains three defectives.  Bulbs are 

selected at random without replacement and tested one by one.  Find the 

probability that the second defective occurs on the sixth draw.  Ans. 1/6. 

Hint:  Let A be the event that there is exactly one defective in the 

first five draws and B the event that there is a defective on the sixth 

draw.  Evaluate P(AflB)  using conditional probabilities. 

4. Let Q be the set function defined on a class of events by 

Q(A) - P(A|B)  where P is a probability measure and B is an event 

for which P(B) > 0.  Show that Q is a probability measure, thus verifying 

that conditional probabilities "act like" probabilities. 

Bayes1 Theorem 

A partition of a sample space is a set of disjoint events 

B., B«, ..., B.  such that their union is the entire sample space S.  For 

example, any event  B and its complement  B  constitute a partition. 

If the sample space corresponds to some population, then any stratification 

of that population, say by race, income level, or sex, constitutes a 

partition of S. 

The following result, the second part of which is called Bayes* 

Theorem, is easily proved. 

Theorem 3-1,  Let B , B2» ..., \    be a partition of S such that 

P(B ) > 0 for each i.  Then for any event A 

(i)  P(A) - Z  PCAOB ) - Z  P(A|B )P(B ) 

(ii)  if P(A) > 0, 

P(Bl|A) - 
P(A'Bi)P(V  . 
£ P(A|B )P(B,) 

j     J 



-23- 

Example.  Suppose  20% of the people in a certain group are bad 

drivers.  Of these, 40% drive sports cars.  Of the good drivers,  5% 

drive sports cars.  If you pick a person at random and he drives a sports 

car, what is the probability that he is a bad driver? 

Let V, B, and G denote the events corresponding to sports car 

drivers, bad drivers, and good drivers in a sample space S that corre- 

sponds to the population of interest.  Then 

P(V) = P(V|B)P(B) + P(V|G)P(G) 

= (.*)(.2) + (.05)(.8) - .12. 

Thu.     PfRlv> « P(V|B)P(B) . (-4H-2) - I Thus,    P(B|V) -   ^        u - 3 . 

Exercises.  1.  Prove the theorem above. 

2. A plant produces three grades of components:  20% of all com- 

ponents produced are of grade A, 30% of grade B, and 50% of grade C.  The 

percentage of defective components in the three grades are 5, 4, and 2 

percent respectively.  (a) What proportion of all components produced in 

the plant are defective?  (b) If a component selected at random from 

the plant's output is defective, what is the probability that it is of 

grade A? Ans.  (a) 0.032, (b) 5/16. 

3. A certain disease is present in about one out of 1000 persons 

in a certain population.  A test for the disease exists which gives a 

"positive" reading for 95% of the victims of the disease, but it also 

gives positive readings for  1% of those who do not have the disease. 

What proportion of the persons who have positive readings actually have 

the disease? Ans. 0.087. 

Independent Events, Independent Experiments, and Bernoulli Trials 

Two events A and B are said to be independent if 

P(A PI B) - P(A)P(B). 
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If P(B) > 0, this condition is clearly equivalent to having P(A|B) » P(A). 

Thus, A and B are independent if and only if knowing that B has 

occurred does not change the probability that A will occur.  In the 

equally likely outcome case, two events A and B are independent if 

the proportion of the points in B that also belong to A is the same 

as the proportion of points in the entire sample space that belong to A. 

Three or more events A., A?,...,A  are said to be independent if 

for any subsequence of k integers i.< i«< ... < i,  from 1 to n 

P(A. HA. n...HA. ) = P(A, )P(A. )"-P(A. ). 
Xl X2     \ Xl   x2      \ 

In particular, three events A, B, and C are independent if the follow- 

ing four conditions hold: 

P(AH B) « P(A)P(B) 

P(AH C) - P(A)P(C) 

P(B H C) * P(B)P(C) 

P(AH BO C) * P(A)P(B)P(C). 

Example.  Referring back to the probability model for throwing two 

fair dice, one can readily check that any two of the three events 

A - "3 on the green die," B - "4 on the red die," and C - "total of seven" 

are (pairwise) independent.  However, it is not the case that P(A 0 BO C) ■ 

P(A)P(B)P(C), because P(A 0 B 0 C) - 1/36 whereas P(A)P(B)P(C) « 

(1/6)  ■ 1/216.  Hence, these three events are not independent. 

The probability model for tossing two fair dice is an instance of 

a model for two "independent experiments." Let S. ■ {s-, s?, ...}  and S9 ■ 

{t., t2, ...}  be discrete sample spaces for two experiments, and let 

P-  and P? be the corresponding probability measures for the separate 
1 

experiments.   Then a sample space for the combined experiment is 

In the dice-throwing example, both S.  and S2 consist of the 

integers from 1  to 6, and both probability measures P.  assign proba- 

bility 1/6 to each point in S . 
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S - SxxS2 = {(s,t) : s € 8lf t € S2>. 

The two experiments are said to be independent if probabilities are 

assigned to the points of S using the formula: 

P{(s,t)} - P1(s}P2(t}. 

To see the connection between independent experiments and independent 

events, let A be any event in the combined sample space S that depends 

on the outcome of the first experiment only (e.g., "3 or more on the red die") 

Then A is of the form C X S - {(s ,t) : s € C) where C  is an event 

in S1     (e.g., C » {3,4,5,6}).  Similarly, let  B = S x D be any event 

that depends on the outcome of the second experiment only (e.g., "2 on the 

green die").  Then it is easily verified that 

P(A PI B) * P(C X D) - PX(C) P2(D) - P(A)P(B). 

Thus, if probabilities are defined multiplicatively on S using the rule 

indicated above, any event that depends on the outcome of the first experi- 

ment only is independent of any event that depends on the outcome of the 

second experiment only. 

To extend the notion of Independent experiments to more general 

sample spaces, one is led by the discussion above for discrete sample 

spaces to proceed as follows.  Let  S.  and  S»  be any two sample spaces 

with probability measures P1  and P«.  If C  is any event in S and D 

is any event in S2, define the probability of the "rectangle" CXD in the 

product space S - S. X S_ by 

P(C X D) - P1(C)P2(D). 

It follows from this definition that any event  A « C XS.  that depends 

on the outcome of the first experiment is independent of any event 

B - S. X D that depends on the result of the second experiment only, 

since 

P(A PI B) - P(CXD) = P1(C)P2(D) - [P1(C)P2(S2)][P1(S1)P2(D)] - P(A)P(B). 

More generally, one can combine the sample spaces S , S?,..., S 

for n separate experiments and define probabilities multiplicatively on 

the product space S - S..XS2x.. .XS  to provide a model for n independent 
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experlments.  It will then follow that, if A., A2,..., A  are events 

such that A.  depends on the result of the ith experiment only, 

these events are independent. 

For example, consider n  trials of exactly the same type (e.g., 

repeated tosses of a coin, or successive draws at random with replace- 

ment from a population) where each trial results in one of two outcomes 

of interest, say 1 and 0  (for success or failure, or heads and tails, 

or employed and unemployed), with probabilities p and  q = 1 - p on 

each trial.  Such trials are called Bernoulli (or binomial) trials. 

A probability model for n Bernoulli trials is prescribed by taking 

the sample space S = {(x., ..., x ) : x s 1 or 0} and assigning proba- 

bilities, for example, as follows: 

P{(1,1,0,1,...,0)} - ppqp---q. 

To see how to compute probabilities of certain events of interest, con- 

sider the event A»  that exactly three of the n  trials result in 

successes.  Then A~  consists of all sample points in S  that have 

exactly three l's.  Since the probability assigned to any such point 

is p3qn~3, it follows that P(A3) = #(A3)p
3qn"3 where #(A3)  is the 

number of points in A~.  But the number of points in A~  is clearly 

the number of ways of choosing three of the n components for the lfs. 

That is, 

#(A,) - Ö - *3'   v3'   3!(n-3)! ' 

In particular, if n - A, the number of points in A-  is 4!/3!l! - A, 

namely, (1,1,1,0), (1,1,0,1), (1,0,1,1), and (0,1,1,1). 

Similarly, if A,  is the event that there are exactly k successes 

in n Bernoulli trials, then 

P(Ak) - (£) pk qn"k  for k = 0,1,...,n. 

For example, the probability of n successes is p , the probability 

of n  failures is qn, and the probability of at least one success is 

1 - q . 
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Exercises.  1.  Find the probability that, if four fair coins are 

tossed, (a) all will turn up heads, (b) three will turn up heads. 

Ans. (a) 1/16, (b) 1/4. 

2. Balls are drawn at random with replacement from an urn con- 

taining 1/3 red balls and the rest white.  Find the probability that 

(a) five successive draws will yield two red balls, then three white 

balls, (b) there are exactly two red balls in the five draws, (c) there 

are at least two red balls in five draws.  Ans. (a) 8/243, (b) 80/243, 

(c) 131/243. 

3. If only 25% of the voters favor a certain candidate, what is 

the probability that a random sample of size 10 will show 8 or more 

favoring him? Ans.  436/410 - 0.0004. 



-28- 

SECTION IV.  RANDOM VARIABLES AND THEIR DISTRIBUTIONS 

References: 

Paul L. Meyer, Introductory Probability and Statistical 
Applications, 2nd Edition, Addison-Wesley, 1970, Chapter 4. 

Seymour Lipschutz, Theory and Problems of Probability, 
Schaum's Outline Series, McGraw-Hill, New York, 1968, 
Chapter 5. 

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw- 
Hill, New York, 1965, Chapter 3. 

Consider the dice-throwing example again, where the sample space 

chosen was S « {(x,y) : x,y fc {1,2,...,6}}.  In the game of "craps," 

one is not interested in the particular outcome  (x,y)  that occurs, 

because only the sum is relevant.  This leads us to consider the "random 

variable" Z on S defined for all points  (x,y) by Z(x,y) - x + y. 

In general, a random variable is a real-valued function defined on a 

sample space.  Roughly speaking, the key idea behind the notion of a 

random variable is that it is a variable that depends on the result of 

a random experiment; its value for a particular outcome of an experiment 

is a number computed from the data point. 

This definition suffices for discrete sample spaces, where all 
subsets of S are events, and for the applications of probability models 
to be considered in this course.  For arbitrary sample spaces, in which 
not all subsets are events, probabilists prefer to define a random vari- 
able X as a real-valued function on S such that the subset 
{a : X(s) £ c} is an event for every real number c.  The purpose of 
this additional restriction is to assure that, under certain reasonable 
assumptions on the class of events, probabilities of the form P(X £ c), 
P(X < c), and P(a < X < b)  are all defined for any random variable X, 
as well as any probabilities of the form P(X £ B) where B is a count- 
able union of intervals (open, half-open, or closed)  on the line.  For 
cur purposes, we can consign this bit of pedantry to a footnote and refer 
the mathematically oriented reader to books on probability theory, e.g., 
the book by Pfeiffer cited above. 
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Some other random variables on the same sample space are: 

X(x,y) - x 

Y(x.y) - y 

V(x,y) - (J if x + y - 7 or 11 
otherwise. 

Note that we have used capital letters X, Y, and Z to denote random 

variables rather than the usual function notation of calculus (e.g., 

f, g, h).  This usage has become traditional in probability and statistics 

to distinguish the random variables from their values, which in turn are 

often denoted in lower-case letters. 

Sometimes random variables are defined implicitly as functions of 

other random variables.  For example,  Z could have been defined above 

using usual function notation as Z * X + Y. 

Ordinarily random variables are defined verbally rather than explicitly 

using function notation.  Thus, one might refer to the number of successes 

X in n Bernoulli trials.  Relative to the sample space S at the end 

of the previous section, this means that for any sample point 

s - (x , x2, ..., x )  consisting of l's and 0fs, X(s) ■ (number of l's 

in s).  Note that if X  denotes the result of the ith trial (i.e., X (s) - x ), 

then X - Zim+  X .  This illustrates how a random variable can sometimes be 

represented as a function of other random variables of a simpler nature. 

Here, each X  has only two possible values 0 and 1.  The utility of such 

representations will be exhibited later. 

The following examples of random variables refer to problems dis- 

cussed in Section 11. 

1.  Hatcheck girl problem. 

Let S be the set of the 4!  permutations of the integers 1,2,3,4, 

namely, (1,2,3,4), (2,1,3,4), etc.  The point  (2,4,3,1), for example 

corresponds to the outcome that the first man receives the second man's 

hat, the second man receives the fourth man's hat, the third man receives 

his own hat, and the fourth man receives the first man's hat.  Let X 

be the random variable corresponding to the number of hats returned 

correctly, so that X(2,4,3,l) - 1, X(l,2,3,4) - 4, etc. 
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2.  Spinner problem. 

The sample space chosen to correspond to the set of possible 

readingB of the spinner was the unit interval [0,1]. 

(a) Let X be the number chosen at random: 

X(s) - s   for all 8. 

(b) Y(s) ■ sin 2TT8.  [NO one said that random variables had to 

be of particular interest for the experiment under consideration.  This 

one happens to be of interest in another context, that of choosing a di- 

rection at random, specified by a point (cos 2TTS, sin 2ns) on the unit 

circle.] 
2      2 

(c) X (8) ■ s .  [Note the strange, but unambiguous, notation.] 

(d)  Z(s)-(j 
if     s > 1/4. 

3.  Telephone problem. 

(a) Let X be the waiting time in minutes until a telephone 

call comes into the exchange, i.e., X(s) - s for all s > 0. 

(b) Y - X/60, the corresponding waiting time in hours. 

(c) Z - integral part of X.  For example, if X(s) - 6.875 

(minutes),  then Z - 6. 

Just as a random variable X "maps" (or "carries") sample points 

from S into the real number line, it also carries probabilities on S 

into the real line R, inducing a probability measure on R that is called 

the distribution of the random variable X.  As we shall see, distributions 

of random variables play a central role in statistical theory. 

To get a feeling for the notion of a distribution of a random variable, 

let us return once again to the dice-throwing example and consider the sum 

of the outcomes on the two dice, Z(x,y) - x + y.  The figure on the next 

page attempts to depict the way that the random variable Z maps points 

in S  Into R and thereby induces a probability distribution on R. 

The top part of the figure indicates the correspondence between events 

in S and the possible values of Z:  2,3, ..., 12.  Since Z has value 

4 on the event  {(3,1), (2,2), (1,3)}, and this event has probability 

P(Z - 4) - 3/36 - 1/12,  the number 4 receives probability 1/12 under 

the distribution induced by Z.  The function depicted in the bottom 

half of the figure indicates the probabilities assigned to the other 
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values of Z. This is a graph of the "probability function" of Z, one 

method of characterizing the distribution of a "discrete" random variable, 

Sample 
space 

S 

Random 
variable 

8  9 10 11 12 

p(z) 

_1 
36 

JL 
12 

3  A  5  6  7  8  9 10 11 12 

Probability function of Z 

Figure IV - 1 
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In general, a random variable X is said to be discrete if there 

is a countable set of real numbers, say A ■ {x-, x«, ...}, such that 

P(X 6 A) ■ 1.  In this case, the function p on A defined by 

p(x) - P(X - x) 

is called the probability function of X.  Some obvious properties of the 

probability function are: 

(a) p(x) ;> 0 for all x in A, 

(b)  Z      p(x) 
x e A 

l. 

The probability function of the random variable Z in the dice- 

throwing example was depicted at the bottom of Figure IV-1.  As a second 

example, let X be the number of hats returned correctly in the hatcheck 

girl problem.  As was seen in an exercise in Section II, 

p(2) « P(X = 2) « 1/4. 

Other values of the probability function of X are given below. 

p(x) 
X P(x) 

0 3/8 

1 1/3 

2 1/4 

3 0 

4 1/24 

Clearly, any random variable on a sample space that has only countably 

many points must be discrete.  As an example of a discrete random variable 

with infinitely many values, consider the waiting time for heads in re- 

peated independent tosses of a fair coin.  Examples of discrete random vari- 

ables on uncountable sample spaces are given by Examples 2(d) and 3(c) 

above.  The other examples of random variables for the spinner and tele- 

phone problems are not discrete, and since P(X ■ x) »0 for all values 

of x  for both the random variable X in the spinner problem and the 

waiting time in the telephone problem, we shall require characterizations 

other than the probability function to specify their distributions. 
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The distribution function (or cumulative distribution function) 

of a random variable X is defined for all real x by 

F(x) - P(X £ x). 

The importance of the distribution function of X is that it provides 

a simple characterization and description of the distribution of X, 

whether X is discrete or not. 

Examples.  1.  Let X be the random variable in the hatcheck 

girl problem.  The graph of the distribution function F of X is 

given below. 
1 " 1     i 

F(x) 1» 
i 

24 

:* 
l 

3 
8 

Comparing this graph with that of the probability function above, we note 

that the distribution function has jumps at 0, 1, 2, and 4,  the values 

which X takes on with positive probabilities. 

2.  If X is the random variable in the spinner problem, then 

0 
F(x) - P(X £ x) 

F(x) 

x 
1 

if 
if 
if 

x < 0 
0 £ X £. 1 
x > 1. 
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3.  Let X be the random variable in the telephone problem. 

Then 

so that 

F(x)-fx f(t) dt where f(t)- 
0     if  t < 0 

1/2 e"t/2 if  t 3t 0 

F(x) - 
1 - e 

-x/2 
if  x < 0 

if  x * 0. 

Although the three distribution functions above are quite different 

in nature, they share a number of common properties.  In general, the 

distribution function F of a random variable X must satisfy the 

following properties: 

(a) 0 £ F(x) £ 1 for all real numbers x. 

(b) F is monotonically increasing, i.e., if a < b, then F(a) £ F(b). 

(c) F(—) - 0, F(oo) - 1. 

(d) F is right continuous, i.e., F(x + 0) - F(x)  for all x [here, 

F(x + 0) denotes lim F(y)  as y tends to x from above]. 

(e) P(a < X s b) - F(b) - F(a). 

(f) P(X - b) - F(b) - F(b-O) [this is the jump in F at b]. 

If X is discrete and has probability function p,  then 

F(x) - E  p(x ). 
X.£X 

In most instances, the probability function is preferable to the distribution 

function in describing a particular discrete distribution. We now turn to 
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another class of distributions for which a characterization other than 

the distribution function is usually preferable. 

A random variable X with distribution function F is said to 

have a continuous distribution if there is a nonnegative function f 

on R (called the density function of R) such that 

(1) F(x) - J* f(t) dt 
*  —CO 

for each real value of x. 

Examples 2 and 3 above provide examples of random variables having 

continuous distributions. The density function of the random variable X 

in Example 2 is given by 

1 if 0 £ x £ 1 

0 otherwise. f(x) 

The density function in Example 3 is clearly specified.  Since 

P(a < X * b) - F(b) - F(a) - J* f (x) dx, 
■ 

these probabilities can be visualized as areas under the curve f(x) and 

between the ordlnates x - a and x - b, as was illustrated earlier in 

Section II. 

It follows from (1) above that, if X has a continuous distribution, 

then its distribution function F is continuous. However, the converse 

of this statement is not true since there are continuous distribution 

functions F for which no density function f exists.  (An attempt to 

depict such a function F is given on page 193 in Introduction to Measure 

and Integration by M. E. Munroe.) Therefore some writers prefer to say 

that X has an absolutely continuous distribution when (1) holds. 

Some observations which follow from (1) are: 

HP ("*} 
(a)  A *(*)    at every continuity point x of f: 

ft)  I!« *« dx- 1; 

(c) if X has a continuous distribution, then 

P(X- x) - F(x) - F(x-O) - 0 

for every real value of x. 
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To indicate an application which gives rise to a random variable 

which has a distribution which is neither continuous nor discrete, con- 

sider measuring the lifetime of a lightbulb, where it is reasonable to 

assume that there is a nonzero probability that the bulb will not burn 

at all. A distribution function like the one pictured below might be 

appropriate in this situation. 

F(x) 

Exercises.  1.  Five balls are chosen at random from an urn contain- 

ing 9 balls of which 3 are white. Let X be the number of white balls 

in the sample.  Find and sketch the probability function of X if the 

balls are chosen (a) with replacement, (b) without replacement. 

Ans.  (a) 32/243, 80/243, 80/243, 40/243, 10/243, 1/243. 

(b) 1/21, 5/16, 10/21, 5/42, 0, 0. 

2.  Suppose Y has a density function of the form 

f(y) - cy    for 0 < y < 1. 

(a) What is the value of c? 

(b) Find P(Y < 1/2). 

(c) Find and sketch the distribution function of Y. 

(d) Find and sketch the density function of U - 3Y.  (Note that 

P(U £ u) => P(Y £ u/3).] 

(e) Find and sketch the density function of V ■ Y + 1. 

Ans. (a) 2, (b) 1/4, (c) F(y) - 0 for y £ 0, y2 for 0 < y < 1, 1 for yil. 

(d) 2u/9 for 0 < u < 3, (e) 2(v-l) for 1 < v < 2. 
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3. Let Y - / X  where X is the random variable in the spinner 

problem. 

(a) Find P(Y < 1/2). 

(b) Find P(Y < 1/2|X < 3/4). 

(c) Find and sketch the distribution function of Y. 

(d) Find and sketch the density function of Y. 

Ans. (a) 1/4, (b) 1/3, (c) same as 2(c), (d) 2y for 0 < y < 1. 

4. Let X be the random variable in the telephone problem.  Show 

that P(X > a+b|X > a) - P(X > b) for all positive values of a and b. 



-38- 

SECTION V. - CHARACTERISTICS OF DISTRIBUTIONS 

References: 

Paul L. Meyer, Introductory Probability and Statistical 
Applications, 2nd Edition, Addison-Wesley, 1970, Chapter 7. 

Seymour Lipschutz, Theory and Problems of Probability, 
Schaum's Outline Series, McGraw-Hill, New York, 1968, 
Chapter 5. 

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw- 
Hill, New York, 1965, Chapter 5. 

Consider the experiment of drawing a tag at random from a box con- 

taining N tags of which 1/2 are marked "1," 1/3 are marked "2," and 

1/6 are marked "3." Let X be the number on the tag that is drawn. With 

an appropriate sample space for this experiment consisting of N equally 

likely outcomes,  X is a random variable having probability function 

x 1    2    3 . 
"?0Ö   1/2  173  176 

The "expected value" of X, denoted by E(X), will be defined below as a 

weighted average of the possible values of X using the probabilities 

p(x)  as weights.  In this case, 

E(X) - 1(1/2) -I- 2(1/3) + 3(1/6) - 5/3. 

Before proceeding with a formal definition, we note two interpreta- 

tions of E(X)  in this example.  First, the arithmetic average (mean) of 

all the numbers on the N tags in the box is 

l(N/2)f 2<M/3) + 3(N/6) „ 1(1/2) + 2(1/3) + 3(1/6) . 5/3- 
N 

Thus, in this case E(X) - 5/3 coincides with the ordinary average of the 

tag numbers in the box.  Next, suppose we repeat the experiment independently 
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a large number of times, say n, and let n-, n?, n  be the number of 

times that tags numbered 1, 2, and 3 are drawn.  Then the average of the 

numbers drawn on the n trials is 

In- -I- 2n- + 3n 
-^ f i- Ki^/n) + 2(n2/n) + 3(n3/n). 

In a large number of trials, we would anticipate that the sample propor- 

tions n./n, njn, and n~/n would be close to the probabilities 1/2, 1/3, 

and 1/6.  Therefore, we would expect that the average of the numbers drawn 

would be close to E(X) ■ 5/3.  The validity of this second interpretation 

of E(X)  will be established later. 

Definition.  Let X be a discrete random variable having possible 

values x-, x., ... and probability function p.  Then the expected value 

(expectation, mean) of X is defined by 

Ed) - ^ ^ P(y 

provided that £ x, ?(\)     converges absolutely.  If E|x, |p(x, ) diverges 

we say that the expected value of X does not exist (or that the expecta- 

tion of X is infinite). 

Examples. 

1. A random variable X  is said to have a Bernoulli distribution 

with parameter p if P(X - 1) - p and P(X - 0) - q - 1 - p.  In this 

case, 

E(X) - l.p + O.q - p. 

2. Suppose X has probability function p(x ) ■ 1/n where 

x.,x2,..., x  are n  (distinct) real numbers.  Then E(X) - £ x /n. 

3. Let X be the waiting time for a "1" if a fair die is tossed 

repeatedly until "1" occurs for the first time.  Then X has probability 
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x-1 
function p(x) - q  p where p * 1/6 and q - 5/6.  Therefore, 

E(X) - lTml xq*~\  - 1/p - 6. [In general, Z^m()  z
k - 1/(1 - z) for 

|z| < 1; taking derivatives on both sides in this equation yields 

J±ml  kz*"
1 « 1/(1 - z)2 for  |z|<l.] 

4.  An example of a discrete random variable that does not have 

an expectation is provided by letting X be a random variable such that 

P(X - 2n) » l/2n for n * 1, 2, ...  In this case, each term in the 

series Ex. p(x,)  is equal to one, and hence the series does not converge. 

Exercises. 

1. Let X be the number of heads that occur in three tosses of a 

fair coin.  Show that E(X) » 3/2. 

2. Five balls are chosen at random from an urn containing 9 balls 

of which 3 are white.  Let X be the number of white balls in the sample. 

Show that E(X) * 5/3 whether the sampling is done with or without replace- 

ment.  [You derived the probability function(s) of X in Exercise 1, page 

36.] 

3. If two fair dice are tossed and Z is the sum of the results, 

show that E(Z) = 7.  (See page 31 for the probability function of Z.) 

Now suppose that the two dice are colored red and green.  Let X be the 

result on the red die, and Y the result on the green die.  Show that 

E(X) « E(Y) - 7/2, thus verifying the E(X + Y) = E(X) + E(Y)  in this case. 

To derive some of the fundamental properties of expectation, let us 

first restrict our attention to discrete sample spaces S ■ {s-, s„, ...}, 

so that the random variables involved will necessarily be discrete. 
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For purposes of illustration, 

let X be a random variable 

on S having only three pos- 

sible values x., x , and x„, 

and consider the partition of 

the sample space into the sets 

A - {s : X(s) - x.}.  Denoting 

ilJ the elements of A  by s 

8.«, ..., we have that 

E(X) - i^ pd^) 

- x1P(AjL) + x2P(A2) + x3P(A3) 

■ x1(P{s11) + P{s12> + ...   ) 

+ x2(P{s21} + P(s22} + ...   ) xl       x2   x3 

4- x3(P{s31) + P{s32> + •••   ) 

- Z    X(s..) P{s..}. 
i,j    J     J 

This shows that, in discrete probability models, our definition of E(X) 

is equivalent to setting 

E(X) - £ X(s)P{s}. 

This means that E(X) can also be interpreted as a weighted average of the 

values of X at each of the sample points where the weights are the proba- 

bilities P{B}. 
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One of the implications of this second representation is that, if 

X and Y are any two random variables on S having finite expectations, 

and if Z - X + Y, then E(Z) - E(X) + E(Y), because 

E(Z) - £Z(s)P{s} - E[X(s) + Y(s)]P{s} - DC(s)P{s} + EY(s)P{s} 
8 

- E(X) + E(Y). 

Also, if W - aX + b where a and b are any constants, then 

E(W) - £W(s)P{s} - £[aX(s) + b]P{s} - a£X(s)P{s} + bZPls} 
8 

- aE(X) + b. 

This motivates the following results, which are true for all probability 

models, not just discrete ones.  (Ref. Pfeiffer, Chapter 5.) 

Theorem 5-1.  If X and Y are any two random variables that have 

finite expectations, then 

(a) E(X + Y) - E(X) + E(Y), and 

(b) E(aX + b) ■ aE(X) + b for any constants a and b. 

Corollary.  If X , X2, ..., X  are n random variables having finite 

expectations, then E(X. + X~ + ... + X ) - E(Xt) + E(X0) + ... + E(X ). 
i   z        n     l      i. n 

Example.  A gambler at the "craps" tables in Las Vegas can place a 

4-to-l bet on the occurrence of  "7" when two fair dice are tossed.  If 

he bets a dollar and "7" occurs, he wins $4; otherwise, he loses $1.  Let 

G be his gain in dollars on a single trial.  Since the probability of winning 

on each toss is 1/6,  P(G - 4) - 1/6 and P(G - -1) - 5/6, so that 

E(G) - 4(1/6) - 1(5/6) - - 1/6. 

Alternatively, one could set X equal to 1 or 0 according as the result 

is "7" or not, in which case G - 5X - 1 and 

E(G) - 5E(X) - 1 - 5(1/6) - 1 - - 1/6. 
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Suppose that he bets a dollar on every toss of the dice for an hour where tosses 

occur at a rate of two a minute, and let G  be his gain on the i_th trial. 

Then his expected overall gain on the 120 trials is 

E(Li-i Gi} " Li-i E(Gi} " 12°-(-w - -20- 
Another implication of the representation E(X) - £X(s) P{s} for 

discrete probability models is that, if Y * g(X) where g is some real- 

valued function on R, then 

E(Y) - £Y(s)P{s} - Lg(X(s))P{8} 
s 

- g(x1)P{s:X(8) - xx) + g(x2)P{s:X(s) « x2} + ... 

- £ gCx^pCxj^), 
k 

where  p  is the probability function of  X.  That is, one can compute the 

expectation of Y - g(X) without first deriving the probability function of Y. 

Theorem 5-2.  If X is a discrete random variable having probability 

function p and if the expectation of Y - g(X)  exists, then 

E(Y) - LgC^) p(xk). 

The more general applicability of the theorems above becomes apparent 

when two facts are observed.  First, the expectation of a discrete random 

variable X depends only on the probability function p of X and not 

on the nature of the sample space upon which x is defined. Therefore, in 

considering expectations of discrete random variables (or functions of dis- 

crete random variables), there is no loss of generality in assuming that 

the underlying sample space is discrete.  Second, for any random variable 

X on any sample space S there is a discrete random variable X  such 
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that  |X(s) - X (s) | <L  1/n for all sample points s, namely, 

Xn(s) «j/n if J/n < X(s) £ (j+1) /n 

where j  is restricted to integer values. 

Using this second observation, one is motivated to define the expecta- 

tion of any random variable X as the limit of the expectations of the 

discrete random variables X , assuming that the limit exists.  If X has 

distribution function F, then P(X ■ j/n) - F(^~^ " F( )» s° that 

(1) E(X ) « Z  4>[F(^) - FA] n   .  n    n      n 

As the figure below indicates, as n-*°°, the sum of the positive terms in 

n  — n 
E(X )  tends to the area of the shaded portion to the right of the origin, 

n 

and the sum of the negative terms tends to the negative of the area of the 

shaded portion to the left. This provides a valid geometrical interpretation 

of E(X)  as the difference between the two shaded areas depicted. 

^ore precisely, E(X) - J°° [1 - F(x)]dx - / ooF(x)dx.  If X is a non- 

negative random variable, then the second term is zero, and E(X) - / [1 - F(x)]dx 

- J°°P(X > x)dx. 
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Now suppose X is a continuous random variable having density 

function f. Then, (1) above can be written as 

(2)      B(Xn) - Z (j/n) J(^)/n f(x) dx - /^ gn(x).f(x) dx 

where g (x) - J/n if j/n < x < (j+l)/n.  Since g (x)-*x as n-*», it 

follows that 

E(X ) +  I*    x f(x) dx 
n    "~°° 

provided that  / |x| f(x) dx < °°.  This motivates the following definition: 

Definition. 

Let X be a continuous random variable having density function f. 

Then the expectation of X is defined by 

E(X) - r x f (x) dx 

provided that  J"^ |x|f(x) dx < •. 

Examples. 

1. Suppose Y has density f(y) - 2y for 0 < y < 1. 

Then E(Y) - J1 2y2 dy - 2/3. 

2. Let X be the waiting time in the telephone problem.  (See page 34.) 

Then X has density f(y) - Xe~*X for x > 0 where \  - 1/2, and 

E(X) - f xXe~Xxdx - - xe-^r 0 + f e~Xxdx - 1/X - 2. 

3. If Z has density f(z) - 1/TT(1+Z2), then E(Z) does not exist 

because /_Q0|z|/TT(1+Z ) dz - *. 

Note that, in the above definition of expectation for the continuous 

case as well as in the corresponding definition for the discrete case, the 

expected value of a random variable X is analogous to the centroid (or 

center of gravity) of a unit mass spread out on the line according to the 
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probability distribution of X.  In the discrete case, if one has masses 

p(x.)f p(x«), ... at the points x. , x«, ... on the line, then the centroid 

of that distribution of masses is at E(X) - Ex, pOO-  Similarly, if a 

unit mas9 is distributed continuously over the real line according to the 

density function f, then the centroid of the distribution of mass is at 

J x f(x) dx.  The following theorem becomes apparent from this Interpretation 

of E(X). 

Theorem 5-3.  If a random variable X having finite expectation has 

a probability or density function that is symmetric about a point c, then 

E(X) - c. 

A second measure of the center of a distribution is the "median." 

Roughly speaking, the median of a distribution is a value such that half of 

the probability lies to the left of the value and half to the right with 

an appropriate adjustment for the discrete case. 

Definition. The median of a random variable X (or of the distribution 

of X)  is defined to be any value m such that P(X 2» m) £ 1/2 and 

P(X £ m) * 1/2. 

For example, if X has probability function p(x ) ■ 1/n where 

x., x~, ..., x  are n distinct real numbers such that x. < x0 ... < x , l  z       n x        t n 

then the median of X is x/n±.\\/2    ** n *8 °dd,and any number between 

x /2 and x(n+')\/o    I*    n is even.  Ordinarily, in the latter case, one 

defines the median to be the average of x «2 and x/n4.2W2*  
Tnus» lf 

n - 10, the median is usually defined as the average of x  and x,. 

If X has a continuous distribution, then there is at least one value 

m such that P(X im)- 1/2. Since P(X £ x) -F(x) where F is the dis- 

tribution function of X, the median of X is any solution of the equation 

F(m) - 1/2. 
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Whether X has a continuous distribution or not, if the distribu- 

tion is symmetric about some point c, then the median of the distribution 

is equal to c. 

Exercises. 

1. Let X be the number of hats returned correctly in the hat-check 

girl problem.  (See page 29.)  Show that the median of X is 1, and 

E(X) - 1.  Verify that the geometric interpretation of E(X) given on page 

44 holds in this case. 

2. Show that if Y has density function f(y) - (2-y)/2 for 0 < y < 2, 

then E(Y) - 2/3, and the median of Y is 2 - / 2 . 

3. Show that if X has density function f(x) - l/(b - a)  for 

a < x < b, then E(X) « (a + b)/2, and the median of X has the same value. 

The linearity properties of expectation specified in Theorem 5-1 hold 

whether the random variables are discrete or not. The theorem that corre- 

sponds to Theorem 5-2 in the continuous case is: 

Theorem 5-4.  If X is a continuous random variable having density 

function f and if Y - g(X)  is a random variable such that E[g(X)] exists, 

then 

E00 - Jl, gOO f<x) dx. 

Exercises. 

1. Let X be the random variable in the spinner problem, and let 

2 
Y - X .  Apply the theorem above to show that E(Y) - 1/3. 

2. Show that the density function of Y in the preceding problem 

is f (y) - 1/2/ y for 0 < y < 1.  Compute E(Y)  from the definition 

and thus verify the result in Problem 1. 
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Definition. The variance of a random variable X, denoted by Var (X) 

2 2 
or a, , is defined by E(X - ^)  where u, - E(X), provided that this 

expectation exists. The standard deviation of X, denoted by a., is 

defined as the positive square root of the variance. 

The variance and standard deviation are measures of the "spread" of 

the distribution of X. Another measure of spread is the mean absolute 

deviation, defined as E|X - u.|. The reason that the variance and standard 

deviation are more widely used is that these measures are more tractable 

for reasons that will become apparent later. 

Examples. 

1. If the distribution of X is entirely concentrated at a single 

point c, so that P(X - c) - 1, then E(X) ■ c and Var(X) - 0. 

2. Let X be the number of heads in five tosses of a fair coin. 

Then X has probability function p(x) - (5)(1/2)X(1/2)5~X - (5)(l/2)5. 

The values of p are as follows: 

x     0     1     2     3     4     5 
p(x)  1/32  5/32  5/16  5/16  5/32  1/32 

By the symmetry of p around x - 5/2, it follows from Theorem 5-3 that 

E(X) - 5/2. The value of Var(X) can be computed directly from the definition: 

Var(X) - E(X - u)
2 - E^Q (x - 5/2)

2p(x) 

- (-5/2)2(l/32) + (-3/2)2(5/32) + (-l/2)2(5/16) + (l/2)2(5/16) 

+ (3/2)2(5/32) + (5/2)2(l/32) - 5/4. 

Thus, the standard deviation of X is c^. - v^5 /2 - 1.12. 
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The following theorem often facilitates the calculation of variance. 

Theorem 5-5.  If X is a random variable for which E(X) - ^ and 

2 
E(X ) < » and if a and b are any constants, then 

(a) Var(X) - E(X2) - u2. 

(b) Var(X + b) « Var(X). 

(c) Var(aX) - a2Var(X), and a^ - !al<V 

(d) Var(aJC + b) - a2Var(X). 

Proof: Var(X) - E(X - u.)2 - E(X2 - 2ü# + u.2) . Using the linearity 

properties of expectation (Theorem 5-1) gives 

Var(X) - E(X2) - 2u,E(X) + u-2 - E(X2) - j»2. 

Parts (b) and (c) follow from (d): 

Var(aX + b) - E(aX + b - au, - b)2 « Ea2(X - u.)2 

- a2E(X - u)2 - a2Var(X). 

Examples. 

1. Applying part (a) of the above theorem, one could have computed 

2 
Var(X) in the previous example by first computing E(X ): 

E(X2) - £x2p(x) - 0(1/32) + 1(5/32) + 4(5/16) + 9(5/16) + 16(5/32) 

+ 25(1/32) - 15/2. 

Hence, Var(X) - E(X2) - ^  - 15/2 - (5/2)2 - 5/4. 

2. Let X be a discrete random variable having probability function 

p(x ) - 1/n where x-, x«, ...» x  are n distinct real numbers. Then 

since E(X) « x « D^/n, Var(X) - Z(x±  - x)2/n.  Applying Theorem 5-5(a), 

2     —2 
one can compute Var(X)  in this case using the formula Var(X) - (Ex. /n) - x . 
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Theorem 5-6. 

(a) If Y is a nonnegative random variable, then P(Y * c) * E(Y)/c 

for all c > 0. 

(b) (Chebyshevf8 Inequality) For any random variable X having 

2 
finite variance a > 

P(|X - |i| * €) * a2/e2 for all £ > 0. 

In particular, P(|X - u,| 2 k o) £ 1/k2 for all k > 0. 

Proof:  (a)  It follows immediately from the geometric interpretation 

of E(Y)  that E(Y) £ c P(Y 2t c)  for all c > 0.  See the figure below. 

(b) P(|X - n| * o - P((X - u.)2 * e2) * E(X - u-)2/e2 - a2/e2. 

It follows from part (b) of the theorem that P(|x-U|<ka)^l- 1/k 

for all k > 0.  The table on the next page compares these "Chebyshev bounds'1 

on the probabilities P(|x - u-1 < k<y) with the actual probabilities for two 

distributions: 

(A) The distribution of the number of heads in five tosses of a fair 

coin.  (See Example 2, page 48.) 

(B) The continuous distribution having the "bell-shaped" density function 
2 

f (x) - (2TT)    e"X  , which has mean 0 and variance 1. 
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Table 1 

A COMPARISON OF CHEBYSHEV BOUNDS WITH 
ACTUAL PROBABILITIES 

P(|X - ul <kCT) 

k 
Chebyshev 

bound Actual (A) Actual (B) 

1 * 0 5/8 - 0.625 0.683 

2 * 3/4 15/16 - 0.938 0.954 

3 * 8/9 1 0.997 

4 * 15/16 1 1.000 

5 * 24/25 1 1.000 
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Exerclses. 

1.  The probability function of the random variable X in the hat- 
check problem was: 

x 0 1 2     3     4 
p(x)    3/8    1/3    1/4    0    1/24 

Here, E(X) - 1.  Compute Var(X) directly from the definition, and check 
your result by computing Var(X) using the formula 

Var(X) - E(X2) - E2(X). 

2. Five balls are chosen at random from an urn containing 9 balls of 
which 3 are white.  Let X be the number of white balls in the sample. 
Find Var(X)  if the sampling is done (a) with replacement, (b) without re- 
placement.  (See Exercise 1, page 36 and Exercise 2, page 40.) 
Ana.  (a) 10/9,  (b) 5/9. 

3. Let X be the random variable in the spinner problem, so that X 
has density function f (x) - 1 for 0 < x < 1.  (a)  Show that VarpC) - 1/12. 
(b) Show that P(|x - E(X) | < 2a) - 1 and P(|X - E(X)| < a) - 1/^3 - 0.577. 

2 
4. Show that if X has mean u, and variance a , then Z ■ (X - u.)/a 

has mean 0 and variance 1. 

5. Suppose X has density function f(x) - (2 - x)/2 for 0 < x < 2. 

(a) Sketch the density function of X and find P(0 < X < 1). 

(b) Find and sketch the distribution function of X. 

(c) Find E(X)  and Var(X). 

(d) Find P(|X - u.| * 2a). 

Ans.  (a)  3/4,  (b) F(x) - 0 for x < 0, x(4 - x)/4 for 0 £ x * 2, 1 for 
x > 2,  (c)  2/3, 2/9,  (d) 0.04. 

6. If X is the sum of two numbers chosen Independently and at random 
between 0 and 1, then X has density f(x) - 1 - |l - x| for 0 < x < 2. 
Find  (a) P(l/2 < X < 3/2),  (b)  E(X),  (c) Var(X),  (d) P(|X - |»| > 2<r). 

Ans.  (a)  3/4,  (b)  1,  (c)  1/6,  (d)  0.03. 

7. Show that,if X is a random variable such that Var(X)  exists, 
then among all real numbers c,  E(X - c)2  is minimized by c - E(X). 
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SECTION VI. - SOME SPECIAL DISTRIBUTIONS 

References: 

Paul L. Meyer, Introductory Probability and Statistical 
Applications, 2nd Edition, Addison-Wesley, 1960, Chapters 8-9. 

Seymour Lipschutz, Theory and Problems of Probability, Schaum*s 
Outline Series, McGraw-Hill, New York, 1968, Chapter 6. 

The table on the next page gives the probability (or density) 

functions, means, and variances of some frequently encountered distri- 

butions. Examples of random variables that have these distributions 

are given below. 

Bernoulli.  Any random variable that takes on only the two values 

1  and 0 with probabilities  p  and  q - 1-p has a Bernoulli distri- 

bution with parameter p. 

Binomial. The number of successes in n Bernoulli trials with 

probability p of success on each trial has a binomial distribution 

with parameters n and p.  (See page 26.) 

Hypergeometric. If X is the number of defectives in a sample of 

size n taken without replacement from a lot of N items of which Np 

are defective, then X has a hypergeometric distribution.  (See Theorem 2-2.) 

The values of the probability function of the hypergeometrlc distri- 

bution for certain values of o, p, and N are given in Table 2.  In 

each case, the values of n and p  are chosen so that the expected number 

of defectives is E(X) - np - 2. Note that for fixed values of n and p 

the distribution becomes more variable as the population size N increases. 
N—n 

Since the variance of the hypergeometrlc distribution is Var(X) - npq(7rjr-), 

as N + oo the variance tends to npq, the variance of a binomial distribution 

with parameters n and p. 

If the sample of size n is taken with replacement instead of without 

replacement, then X has a binomial distribution with parameters n and p. 

As intuition would suggest, if the population size is much larger than the 
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Diatrlbutlon and 
range of parameters 

Bernoulli (p) 
0 < p < 1 

Table 1 

A SHORT TABLE OF DISTRIBUTIONS 

Probability or 
density function 

Mean 
E(X) 

x 1-x 
p q  , x ■ • 0,1 P 

Variance 
Var(X) 

pq 

Binomial (n,p) 
0 < p < 1 
n - 1,2,... 

(nN x n—x     A , 
>q  , x - 0,1,....n np npq 

Hypergeometric 
N - 1,2,... 
n - 1,2.....N 
p - 0, 1/N,...,(N-1)/N,1 

<ÜP) (üqJ n-x 

Negative 
Binomial 
0 < p < 1 
r - 1,2,... 

Uniform  (a,b) 
- * < a < b < 

* 

,  x - 0,1,...,n np 

,x-l.   r x-r .   , . (
r-l>P q       , x - r,  r + 1,... r/p 

b - a ,  a < x < b a + b 

,N-n, npq(^) 

Poisson (X) 

X >o ^jA—, x « 0,1,2,... X X 

Geometric 
0 < p < 1 x-1     . » pq   , x - 1,2,... 1/P q/p 

rq/p 

(b - a)' 
12 

Normal  (^,  a ) 

a > 0 
a J 2TT 

-(x - pjW 

Negative 
Exponential  (X) 

X > 0 
Xe"Xx, x > 0 1/X 1/x' 

Gamma (r,X) 

r > 0, X > 0 Kl*)'"1 e-xx 
r(r)  c  ' 

x > 0 r/X r/X2 

Chi-8quare (n) 1     Än/2 -1 -x/2 c , x > 0 n 2n 
n - 1,2,... 
See Gamma <|'±) 2n/2r(n/2) 

Cauchy (^,X) 
X >o X 00 

irCjf+Cx-i»)2) 

Laplace (u.,X) 
X >o 

.1  -|x-ul/X 
2X e \> 2X2 

Pareto (or.c) f (|)^.x>c «c 
at-1 

if a > 1 
2 

c > 0, or > 0 <o-l)*<cr-2) iJ 
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Table 2 

A COMPARISON OF HYPERGEOMETRIC, BINOMIAL, 
AND POISSON PROBABILITIES 

Sample Hypergeometric 
Binomial size p   x   N-5 10 20 50 100 Pois8on 

5 0.4  0 .024 .051 .067 .073 .078 .135 
1 .238 .255 .259 .259 .259 .271 
2   1.0 .476 .397 .364 .354 .346 .271 
3 .238 .238 .234 .232 .230 .180 
4 .024 .054 .069 .073 .077 .090 
5 — .004 .007 .009 .010 .036 

10 0.2  0 .043 .083 .095 .107 .135 
1 - .248 .266 .268 .268 .271 
2 1.0 .418 .337 .318 .302 .271 
3 - .248 .218 .209 .201 .180 
4 - .043 .078 .084 .088 .090 
5 - - .016 .022 .026 .036 
6 - - .002 .004 .006 .012 
7 - - .000 .000 .001 .003 
8 - - .000 .000 .000 .001 
9 - - .000 .000 .000 .000 

10 - — .000 .000 .000 .000 

20 0.1  0 .067 .095 .122 .135 
1 - .259 .268 .270 .271 
2 1.0 .364 .318 .285 .271 
3 - .234 .209 .190 .180 
4 - .069 .084 .090 .090 
5 - .007 .022 .032 .036 
6 - - .004 .009 .012 
7 - - .000 .002 .003 
8 - - .000 .000 .001 

9-20 ■■ — .000 .000 .000 
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sample size, then the hypergeometric probabilities P(X - k) differ 

little from the corresponding binomial probabilities, and as N *> °° 

the hypergeometric probabilities tend to the binomial probabilities. 

Table 2 compares the two sets of probabilities for N - 100 and for 

three sample sizes n - 5, 10, and 20. 

Poisson.  Suppose that events of a certain type (such as traffic 

accidents, arrivals at a checkout counter, emissions of a-partides from 

a radioactive source, vacancies in the Supreme Court during a year, etc.) 

are occurring randomly over time in such a way that certain assumptions 

are satisfied (e.g., the events occur singly, and the numbers of occur- 

rences in disjoint time intervals are "independent").  Then the number 

of occurrences X in a unit time interval can be assumed to have a 

Poisson distribution with parameter X» where X is the mean number of 

occurrences in an interval of length one.  The number of occurrences in 

a time interval of length t has a Poisson distribution with parameter Xt. 

The Poisson distribution also arises as a limit of binomial distribu- 

tions as n -> » and p -► 0 in such a way that np -► \.    Table 2 gives 

the Poisson probabilities for X - 2.  Compare these probabilities with 

the binomial probabilities for  (a)  n - 5, p - 0.4; (b) n - 10, p - 0.2; 

and  (c)  n ■ 20, p - 0.1.  In all three cases,  np * 2.  Note that as 

n Increases, the differences between the binomial and Poisson probabilities 

become smaller. 

Geometric and Negative Binomial.  These distributions occur in con- 

sidering the number of Bernoulli trials required until a certain number 

of successes occur.  If X is the number of trials required until r 

successes occur, then X has a negative binomial distribution with para- 

meters r and p, where p is the probability of a success on each 

trial.  If X is the waiting time for the first success (i.e., the 

special case where r ■ 1), then X has a geometric distribution.  For 

example, if two fair dice are tossed again and again until a total of 

seven occurs for the first time, then the number of the trial on which 

seven occurs has a geometric distribution with parameter p - 1/6, and 

the expected number of trials is 6. 

Hie yer, op. clt., pp. 166-168. 
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Uniform.  A random variable U has a uniform distribution on an interval 

(a,b) if the probability that U takes on values in any subinterval (c,d) of 

(a,b) is proportional to the length of the subinterval, and the probability 

that U takes on values outside the interval (a,b) is zero.  For example, the 

random variable in the spinner problem has a uniform distribution on (0,1). 

Normal.  This distribution is the most frequently used of all distribu- 

tions in statistical applications for two reasons:  (a) many statistical cal- 

culations are greatly simplified if the random variables involved are assumed 

to have normal distributions, (b)  the normal distribution provides a reason- 

able approximation for distributions of repeated measurements of many physical 

phenomena—cranial lengths, ballistic measurements (coordinates of deviations 

from the target), logarithms of incomes, heights, IQ scores, sums or averages 

of several test scores, etc.  The normal distribution is also the limiting 

distribution of many distributions (binomial, hypergeometric, Poisson, negative 

binomial, and distributions of sums and averages of random variables that 

satisfy certain properties). 

A random variable  Z  is said to have a standard normal distribution 

if Z has density function <p(z) - (2JT)   
2 e~Z '2 for -• < z < ».  This 

bell-shaped density function is symmetric about zero.  It is easily verified 

that E(Z) ■ 0 and Var(Z) - 1.  The distribution function of Z, commonly 

denoted by $    in the statistical literature, is tabulated in Table 3.  For 

example,  P(Z < 2) - $(2) - 0.9772.  The values of  f(z)  for negative values 

of z can be computed using the formula $(z) - 1 - fc(-z), which follows 

from the symmetry of the distribution about zero.  For example, 

P(Z < -2) - 1 - |(2) - 0.0228.  Note that P(-2 < Z < 2)  is approximately 

0.95. 

If X is a random variable such that Z - (X - u.) /a has a standard 

normal distribution, then X is said to have a normal distribution with 
2 2 

parameters u and O  > which is often abbreviated to X ~ N(^,cr ). 

Exercise.  Verify that (a) the random variable Z having a standard 

normal distribution has mean 0 and variance 1, (b)  P(-l < Z < 1) - 0.68, 
2 

(c) X - n + QL    has mean \j,    and variance a  , (d)  X has density function 

f(x). _2_e-<x-»>W. 
</2n o 
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Table 3 

CUMULATIVE NORMAL DISTRIBUTION 

J - • V 2r - • V2 r 

X .00 .01 .02 03 .01 .05 

.5199 

.05 

.5239 

.07 

.5279 

.as 

.5319 

.09 

.0 .5000 .6010 .5080 .6120 .5100 .5359 

.1 ..S2«>S .5433 .5178 .5517 .5557 .5590 . 5030 . 5075 .5711 .5753 

.2 .5?*):; .6832 .53,1 .5910 .5'. MS . 5987 ,0020 .0004 .0103 .0141 

.3 .6179 .0217 .0255 .0203 .0331 B3G* .0190 .04 13 .04 Si» .0517 

.4 .0551 .0591 .0028 .0001 .0700 .0730 .0772 .0608 .0811 , .0879 

.5 .0015 .0950 .09S5 .7019 .7051 . 7089 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7321 .7357 .73S9 .7122 .7151 .7430 .7517 .7619 

.7 .7580 .7011 .7042 .7073 .7701 .7731 .7704 .7791 .7823 .7852 

.8 .7881 .7910 .7939 .7907 .7005 .8023 .8051 .8078 .8100 .8133 

.9 .8159 .8180 .8212 .8238 .8204 .S2S9 .8315 .8310 .3305 .8389 

1.0 .8113 .8138 .8101 .8185 .8508 .8531 .8551 .8577 .8599 .8021 
1.1 .8013 .8005 .8080 .8708] S72«» .8719 .8770 .8790 .8810 .8830 
1.2 881!» .8809 .88SS .8907 .8925 .39)1 .8902 .8980 .8997 .9015 
1.3 .9032 .9019 .9000 .9032 .9099 .9115 .9131 .9117 .9102 .9177 
1.4 .9192 .9207 .9222 .9230 .9251 .9205 .9279 .9292 .9300 .9319 

1.5 .9332 .9345 .9357 .9370 .9332 .9391 9400 .9418 .9129 .9441 
1.6 .9152 .9103 .9471 .9481 .9195 .9505 .9515 .9525 .9535 .9545 
1.7 .9551 . 9501 .9573 .9582 .9591 .9599 .9008 .9010 .Mt,"JO .9033 
1.8 9C.1I .90 19 .9050 .9001 .9071 .9078 .9080 .9093 .9099 .9700 
1.9 .9713 .9719 .9720 .9732 .9738 .9744 .9750 .9750 .9701 .9707 

2.0 .9772 977S .9783 .9789 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9321 9S20 .9830 .9831 .933K .9812 .9340 .9850 .9851 .0007 
2 2 9M.1 .9801 .9808 .9871 .0870 .9578 .9381 .9S81 .9SS7 0800 
2 3 .9893 .9890 .9S98 .9901 .9901 .9900 . 9909 .9911 9«»I3 .9910 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9930 

2.5 .9938 .9910 .9941 .9943 .9945 .9940 .9918 .9919 .9951 .9952 
2.0 .01168 .9955 .9950 9957 .9959 .0000 .9901 .9902 

.9972 
.9903 .9904 

2.7 1 .9905 .9906 .9907 .9908 .9909 .9970 .9971 .9973 .9974 
2.8 .9974 .9975 .9970 .9977 .9977 .9978 .9979 .9979 .99*0 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9980 .9980 

3.0 .9987 .9987 .9987 .9983 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9991 .9991 .9991 .0003 .0016 .9995 
3 3 9995 .99'. »5 .9995 .9990 .9990 .9990 .9990 .9990 .99 JO .9997 
3.4 .0007 .9997 9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

X 1.282 1.045 1.000 2.320 2.570 3.090 3.291 3.891 4.417 

too .90 .95 .975 .99 .995 .UOoj .9995 .99995 .999995 

2(1 -!<*)! .20 .10 .05 .02 .01 .002 .001 .0001 .00001 
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2 
If X ~ N(u.,a ),  then one can use a table of the standard normal 

distribution function to compute any probability of the form P(a < X < b): 

p(a < x < b) - p<£* < *=* < Sai) . #(ka») . l(«ai). 
o        a        o o Q 

For example, if X~N(28,4), then 

P(25 < X < 27) - *<^j2i) - *(^^) - $(-0.5) - K-1.5) 

- 0.31 - 0.07 - 0.24. 

The normal distribution frequently occurs as the limiting distribution 

of sums or averages of a large number of random variables.  In the simplest 

case, consider a sequence of Bernoulli trials with probability p of success 

on each trial.  Let X  be 1 or 0 according as the ith trial is a success 

or not, and let S - X, + X„ + ... + X .  Then S  is the number of successes 
n   1   2 n n 

in the first n trials, which has a binomial distribution with parameters n 

and p, so that E(S ) - np and Var(S ) - npq.  For large values of n, 

the distribution of S  is approximately normal with mean u, - np and 

2 
variance a   = npq in the sense that 

S  - np 
P(a £ — * b) - «(b) - *(a) 

»/npq 

for any real numbers a < b, and as n •* °° the probability on the left tends 

to the limit on the right.  This is called the DeMoivre-Laplace Central Limit 

Theorem.  For a proof, see W. Feller, An Introduction to Probability Theory 

and Its Applications, Volume I, 3rd Edition, John Wiley, 1968, pp. 182-186. 

(A more general result on the limiting distribution of sums of outcomes of 

independent trials is contained in Section VIII.) 

It follows that for any integer k, 

p(s s h) -K-S^ * *^S£) - K*-=-S2). 
/npq     /npq       /npq 

This approximation is usually improved by first replacing P(Sn £ k)  by the 

equivalent quantity P(S £ k + 1/2)  and then proceeding as before to obtain 
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P(S * k) - P(s * k + 1/2) - t(^<l/
2)-nP). 

n n j  •npq 

This so-called "continuity correction" is motivated by the fact that a step 

function (namely, the distribution function of S ) is being approximated 

by a continuous function (the distribution function of a normal distribution) 

that tends to pass through the "midpoints" of the steps. 

Table 4 on the next page compares the two normal approximations for the 

case where n * 12 and p - 1/4. The entries in the column headed "Poisson 

approximation" are the probabilities P(X £ k) where X has a Poisson dis- 

tribution with parameter X. « 3. 

Example.  If 55 percent of the voters of a large city are in favor of 

a given proposal, what is the probability that a random sample of 100 voters 

would not show a majority in favor? 

Let X be the number in the sample favoring the proposal.  If the 

sampling is done with replacement, then X has a binomial distribution with 

parameters n ■ 100 and p - 0.55, so that E(X) * np - 55 and 

a ■ /npq - 4.98.  Hence 

P(X * 50) - P(X £50.5) - P(f=H * HTW^  " *<-°-90> " °-18' 
Exercises.  1. A man claims to be able to predict whether a fair coin 

will result in heads before it is flipped.  To test his contention you toss 

a fair coin 100 times and record the number of times that he predicts the re- 

sult correctly.  What is the approximate probability that he will predict the 

result correctly 60 or more times if his predictions are mere guesses? Ans. 0.03. 

2.  Suppose that the lifetimes of components of a certain type have a 

2 
N(^,o ) distribution with ^ - 1000 hours and a - 100 hours.  What is the 

approximate probability that, among 45 components chosen at random from com- 

ponents of this type, 10 or more will last less than 900 hours? [To make the 

arithmetic easy, assume that  *(-!) - 1/6.] Ans. 0.21. 



-61- 

Table 4 

A COMPARISON OF THE NORMAL AND POISSON APPROXIMATIONS TO THE 
BINOMIAL PROBABILITIES P(S £ k) FOR THE CASE n - 12, p - 0.25 

Normal approximation 

k P(S £ k) 
n 

Without 
continuity 
correction 

With 
continuity 
correction 

Poisson 
approxi- 
mation 

0 .0317 .0228 .0478 .0498 

1 .1584 .0913 .1587 .1991 

2 .3907 .2525 .3695 .4232 

3 .6488 .5000 .6305 .6472 

4 .8424 .7475 .8413 .8153 

5 .9456 .9087 .9522 .9161 

6 .9857 .9772 .9902 .9665 

7 .9972 .9962 .9987 .9881 

8 .9996 .9996 .9999 .9962 

9 1.0000 1.0000 1.0000 .9989 

10 1.0000 1.0000 1.0000 .9997 

11 1.0000 1.0000 1.0000 .9999 

12 1.0000 1.0000 1.0000 1.0000 
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The Lognormal Distribution.  A random variable X is said to have a 

lognormal distribution if Y - log X has a N(u.,a2) distribution. This is 

equivalent to saying that X has a lognormal distribution if there is a 

normally distributed random variable Y such that X has the same distribu- 

Y 
tion as e .  Since X has distribution function 

F (x) - P(X * x) - P(eY * x) - P(Y £ log x) - Jlog X f (y) dy  for x > 0, 

X has density function 

f(x) -F'(x) - fY(log x) 
d(loS X) 

- (1/ox/^f)  exp {-(log x - u.)2/2<72)   for x > 0. 

tY 2 2 
Using the fact that E(e ) - exp {^t + a t /2}  for all values of t  (see 

Meyer, op. cit., p. 210) , one can show that 

E(X) - E(eY) - e»+° /2 

2  2 
Var(X) - e**+a (ea - 1). 

The median of the distribution of X is e** .  [In general, if Y is a 

random variable having median m, and if X is an increasing (or decreasing) 

function of Y, say X - h(Y) , then the median of X is h(m).] 

The Negative Exponential, Gamma, and Chi-square Distributions.  Suppose 

that event8 of a certain type are occurring over time in such a way that X , 

the number of events up to time t, has a Poisson distribution with 

parameter \t    for all values of t. Consider the waiting time T for exactly 

r events to occur.  Then the distribution function of T is 

P(t) - P(T it)- P(Xt * r) - 1 - E^J e"
XtUt)n/nl   for t > 0. 

Therefore, the density function of T i8 

f(t) - F'(t) - - ZT~]  •"Xt(Xt)n"1X/(n-Wt + E^o (Xt)nXe"Xt/n!  for t > 0. n—1 n-u 

Since the terms in the first sum are the negatives of the first r-1 terms 
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ln the second sum, the density reduces to 

f(t) - Kxt)r~Vu/(r-l)l   for t > 0. 

A random variable having this density is said to have a gamma distribution 

with parameters r and X.  If r - 1, then 

f(t) - \e~Xt for t > 0. 

A random variable having this density is said to have a negative exponential 

distribution with parameter X. 

In general, if events are occurring randomly over time in such a way 

that the number of occurrences up to time t has a Poisson distribution 

with parameter t, then not only is it the case that the waiting time for 

the first occurrence has a negative exponential distribution with parameter 

X, but also the waiting times between any two successive occurrences has a 

negative exponential distribution with the same parameter.  Conversely, if 

the waiting times between successive occurrences are "independent"  (see 

Section VII) and if these waiting times have a negative exponential distribu- 

tion with parameter X, then the number of occurrences in any fixed time 

Interval of length t has a Poisson distribution with parameter \t.    Thus, 

to generate a sequence of occurrences for which the Poisson model would 

apply, it suffices to generate random variables having negative exponential 

distributions.  (See Exercise 2 below.) 

The parameter r in the gamma distribution was assumed to be a posi- 

tive Integer above, but the gamma distribution can be defined for all positive 

values of r by specifying the density as 

f (t) - X(Xt)r"VXt/r(r)   for t > 0, 

where T is the gamma function defined by 

r(r) - L x   e  dx. 
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It can be shown using integration by parts that 

r(r) « (r-l)r(r-l), 

and since r(D - /Q e"X dx - 1, it follows that r(r) - (r-1)!  for all 

positive integers r.  It can be shown that r(l/2) ■ i/jj.    Applying the 

formula above, one can compute T(3/2) - V^T /2, T(5/2) - 3^TT M» etc. 

The chi-square distribution with n degrees of freedom, which will 

be discussed in Section VIII, is a special case of the gamma distribution 

with parameters r - n/2 and X - 1/2. 

Exercises. 

1. Show that, if X has a gamma distribution with parameters r 

and X, then E(X) « r/X and Var(X) « r/\2. 

2. Show that, if U has a Uniform(0,l) distribution, then T - -log U 

has a negative exponential distribution with parameter X ■ 1» and V - T/X 

has a negative exponential distribution with parameter X 

The Cauchy Distribution. A random variable X is said to have a 

Cauchy distribution with parameters u. and X > 0 if X has density 

function 

f (x) -  «—- j-   ,     - » < x < «» . 
TTU + (x-u.ri 

Since the Cauchy distribution has a bell-shaped density function that is 

symmetric about u,, the median of the distribution is u..  The distribution 

is of primary interest to statisticians as a source of counterexamples. 

The expectation and variance of random variables having this distribution 

do not exist, and certain averages of random variables having Cauchy dis- 

tributions have peculiar properties that will be discussed in Section VIII. 
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Laplace Distribution. A random variable X is said to have a Laplace 

(or double exponential) distribution if it has density function 

f(x) - l-«-|*-ul/A f       - oo<X <« . 

This tent-shaped distribution, which is symmetric about its mean u., is 

primarily of theoretical interest, in part because of problems related 

to estimating the parameter u,.  The case u. * 0 arises in considering 

differences of random variables that have negative exponential distributions. 

Pareto Distribution.  This distribution has density 

f(x) - (oVcMc/x)0*1     for x > c. 

This arises in considering distributions of characteristics which have been 

"truncated" from below.  For example, consider the distribution of incomes 

among families that have incomes exceeding $20,000, or the distribution of 

rain-gauge readings after storms that yield more than one inch of rain. The 

parameter c above is the truncation point.  Since P(X > x) - (c/x)a for x > c 

by Exercise 1 below, the parameter or indicates how rapidly the probability 

in the "tail" of the distribution tends to zero. 

Other Truncated Distributions.  The distribution of any random variable 

X can be truncated to the left (or right) at some point  c by considering 

the (conditional) distribution of X on the set  {X > c}  (or {X < c}).  If 

X has density function f(x), the conditional probability that X £ x given 

that X > c  is 

P(X * x|X > c) « P^(< * *}
X) - J* f(x')dx'/[l-F(c)]   for x > c. 

This can be viewed as the "conditional" distribution function of X given 

that X > c.  Taking the derivative of P(X £ x|X > c)  with respect to x 

yields the density function 

8(X) * lf(x)/[l-F(c) 
for x £ c 

]    for x > c. 
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This density function, which is zero for x £ c and has the same shape as 

f(x)  for x > c, is said to be the density function of the distribution of 

X truncated to the left at x ■ c. Density functions of distributions 

truncated to the right and probability functions of distributions truncated 

to the left (or right) are defined similarly. 

2 
Examples.  1.  If X ~ N(u.,a ), the density of the distribution of X 

truncated to the left at x - c is 

, v    X   -(x-u)2/2a2 g(x) -   e   **' 
^rf a 

where K - 1/P(X > c) « [1 - «C^)]'1 - [•*■=% 1"*. a        a 
It can be shown that the expectation and variance of the truncated distribu- 

tion are U+Xa and  (1 - \2)(j2  + X<x(c - u.) where X - ^^^^^^ • 

[See H. Cramer, Mathematical Methods of Statistics, Princeton University Press, 

Princeton, 1946, p. 249. The function |(t)/<p(t)  is tabulated in D. B. Owen, 

Handbook of Statistical Tables, Addison-Wesley, Reading, Massachusetts, 1962, 

pp. 1-10.] 

2.  Suppose X has a negative exponential distribution with parameter X* 

Then 
P(X > c)  -  J°° Xe"XXdx - e"XC for all    c > 0. 

* c 

The density of the distribution of X truncated to the left at x - c is 

g(x) - Xe"Xx/e"Xc - Xe"X(x~c)    for x > c > 0. 

In this case, the truncated density is the same as the original density 

except that it has been shifted c units to the right.  It follows that the 

2 
expectation and variance of the truncated distribution are c + 1/X and 1/X * 

Exercises.  1.  Show that, if X has the Pareto density with parameters 

or and c, then 

(a) P(X > x) - (c/x)"   for x > c, 

(b) E(X) - cfc/(a-l)  for or > 1. 

Note that the expectation does not exist if of i 1. 
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2.  Let T be the lifetime in hours of a component chosen at random 

from electronic components of a certain type.  Then the probability P(T > t) 

can be interpreted as the proportion of components of that type that last 

for more than t hours.  In reliability theory, the function defined by 

R(t) - P(T > t)   for  t > 0 

is called the reliability function for these components.  Clearly, R(t) - 1 - F(t) 

where F is the distribution function of T.  For example, if T has a negative 

exponential distribution with parameter X  then R(t) - e~*   for t > 0. 

(a) Suppose n components are chosen at random from components having 

reliability function R(t), and all of them begin operating at the same time. 

Let N(t)  be the number of these components that are still operating after 

t hours.  Show that E[N(t)) - n R(t)  and P{N(t) - n} *  [R(t)]n. 

(b) Show that, if T has density function 

f (t) - Xkt^expC-Xt*)    for t > 0 

where X, k are positive parameters, then R(t) - exp(-\t )  for t > 0. 

A random variable having this density is said to have a Weibull distribution 

with parameters k and X.  Note that, if k ■ 1, this is the same as the 

negative exponential distribution with parameter X. 

(c) Show that the random variable T in part  (b)  has the same dis- 

1/k 
tribution as X    where X has a negative exponential distribution with 

parameter X, and use this to show that the n   moment of T is 

E(Tn) - x"n/kT(n/k + 1). 
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SECTIQN VII. - JOINT DISTRIBUTIONS, CORRELATION, AND CONDITIONING 

References: 

Paul L. Meyer, Introductory Probability and Statistical 
Applications, 2nd Edition, Addison-Wesley, 1960, Chapter 
9 and pp. 144-158. 

Seymour Lipschutz, Theory and Problems of Probability, 
Schaum's Outline Series, McGraw-Hill, New York, 1968, 
Chapter 5. 

Paul E. Pfeiffer, Concepts of Probability Theory, McGraw-Hill, 
New York, 1965, pp. 142-179. 

Let X and Y be two random variables defined on the same sample space 

S. Just as a single random variable X carries probabilities from S into 

the line R, thereby determining a probability measure on R called the dis- 

tribution of X, the pair of random variables  (X,Y) carries probabilities 

2 1 
into the plane R , determining a probability measure on the Borel subsets of 

2 
R  called the joint distribution of X and Y.  In particular, the probability 

carried into the half-open rectangle  (a,b]x(c,d] by  (X,Y)  is 

P(a < X £ b, c < Y £ d) - P {s: a < X(s) £ b, c < Y(s) £ d}. 

Definition.  Two random variables X and Y are said to have a discrete 

joint distribution if there is a countable set A - {(x »y.), j-1,2,..., 

k-1,2,...} such that P{(X,Y) c A} - 1.  In this case, the function p 

defined on A by 

p(xJ,yk) " P(X ' V Y " *** f0r J-1'2»'--^-1'2»--- 

is called the joint probability function of X and Y. 

Clearly, p(x,y) ^ 0 for all (x,y)  in A and L P(*j»vk) " !• Also, 

if p  and p  are the probability functions of X and Y, then 

Px(Xj) - 2^ p<Xj,yk) for j-1,2...., and PY(yk> - £j p(Xj.yk> tor  k- 1,2,, 

The class of Borel subsets of R  is the smallest collection of sets that 
contains the rectangles  (a,b]x(c,d] and is closed under countable set 
operations. 
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In this context, p  and p  are called the marginal probability functions 

of X and Y to distinguish them from the joint probability function p. 

If the Joint probability function is given by a two-way table as in the 

example below, then the marginal probability functions can be obtained by 

summing the rows and columns in the table. 

Example. A fair coin is tossed four times.  Let X be the number of 

heads on the first two tosses, and let Y be the number of heads on all four 

tosses.  Then the Joint and marginal probability functions of X and Y are 

as follows: 

^\^^  X 0 1 2 pY(y) 

0 1/16 0 0 1/16 

1 1/8 1/8 0 1/4 

2 1/16 1/4 1/16 3/8 

3 0 1/8 1/8 1/4 

4 0 0 1/16 1/16 

Px(x) 1/4 1/2 1/4 1 

The Joint distribution of any pair of random variables is completely 

determined by their joint distribution function F, which is defined by 

F(x.y) - P(X £ x, Y £ y)  for all x and y. 

To distinguish the joint distribution function from the individual distribu- 

tion functions of X and Y, the latter are referred to as the marginal 

distribution functions in this context.  The marginal distribution functions 

can be determined from the joint distribution function by 

Fx(x) - F(x,~)  and Fy(y) - F(«sy). 

The "bivariate" distribution function F has properties analogous to 

those in the "univariate" case (see page 34). 
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(a) 0 £ F(x,y) £ 1 for all  (x,y)  In R2. 

(b) F(x,-») - F(-°°,y) ■ 0 for all x and y, and F(«,*) - 1. 

(c) F is monotonlcally increasing and right continuous in each of its 

arguments. 

(d) P(a < X <; b, c < Y £ d) «= F(b,d) - F(b,c) - F(a,d) + F(a,c). 

Although the joint distribution function is of theoretical Interest since 

it characterizes any type of joint distribution, it is hard to visualize and 

awkward to work with. Therefore» in practice, the joint distribution of a 

pair of random variables is ordinarily specified by giving either their joint 

probability function or their joint density function, which is defined as 

follows: 

Definition.  Two random variables X and Y are said to have a con- 

tinuous (or absolutely continuous) joint distribution if there is a nonnegative 

2 
function f on R  (called the joint density function of X and Y) such 

that for all  (x,y) 

F(x,y) - JX Jy f(x'.y') dy» dx\ 

This is equivalent to saying that X and Y have a continuous distribu- 

2 
tion if there is a nonnegative function f on R  such that for all real 

numbers a,b,c, and d with a < b and c < d 

P(a < X < b, c < Y < d) - /b/d f(x,y) dy dx. 
a c 

Hence, in this case, the probability P(a<X<b, c<Y<d) has the geo- 

metrical interpretation as the volume under the surface z ■ f(x,y)  and above the 

rectangle  (a,b)x(c,d). 

If X and Y have joint density function f, then the "marginal" density 

function of X is  f (x) - f° f(x,y) dy, because Fx(x) - F(x,<») - /"/"fU'.y) dy dx* 

and it follows from the definition of the density function (see page 35) that 

X has the density function fx(x) ■ /" f(x,y) dy. 
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Example.  Let X and Y be the successive waiting times for two calls 

coming into a telephone exchange.  Suppose that X and Y have joint density 

function 

f(x,y) - e"
(x+y)  for x > 0, y > 0. 

[Assume here and below that  f(x,y) * 0 for values of x and y other than 

those for which the functional form is specified.]  In this case, the marginal 

density function of X is 

fx(x) - T f(x,y) dy « /" e'
(r+7) dy - e"X for x > 0. 

—oo 

By the symmetry of the joint density function, Y has the same density function 

as X.  The following two examples illustrate how the joint density function 

can be used in computing probabilities of events: 

(a)      P(min(X,Y) > 2) - P(X > 2, Y > 2) - /^ J~ e"(x+y) dy dx 

/- e-X[/; e-y  dy]dx - e"'J~ e"X dx e 

(b)      P(X + Y < 2) - /J/J"X e~(x+y) dy dx 

tl    -x f1   x-2, .    tl   ,  -x - J0 e  [1 - e  ] dx - J0 (e  - e  )dx - 1 - 3e  . 

Given the Joint density of X and Y, one can (in theory) derive the distribu- 

tion of random variables Z that are functions of X and Y.  For example, 

let Z - X + Y.  Then the distribution function of Z  for  z > 0 is 

F(z) - P(Z £ z) - P(X + Y £ z) - 1 - e"Z - ze"Z. 

The last expression follows by a calculation like that in (b) above.  It follows 

that Z has the density function 

fz(z) - F»(z) - e"
Z + ze"2 - e"Z - ze"Z for z > 0. 

Exercises. 

1.  Three balls are placed at random into one of three cells.  Let X 

be the number of balls in cell #1 and  Y the number in cell #2. 
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(a) Verify that the joint and marginal probability functions of X and 

Y are as follows: 

rv x 

1 y >K 
0 1 2 3 pY(y) 1 

0 1/27 1/9 1/9 1/27 8/27 

1 1/9 2/9 1/9 0 4/9 

2 1/9 1/9 0 0 2/9 

3 1/27 0 0 0 1/27 

1 px(x) 8/27 A/9 2/9 1/27 1 

(b) Derive the probability function of Z « X + Y and verify that 

E(Z) - E(X) + E(Y). Ans.  p(0) - 1/27, p(l) - 2/9, p(2) « 4/9, p(3) - 8/27. 

(c) Show that Var(X) - Var(Y) - Var(Z) - 2/3, so that Var(X ♦ Y) 

+  Var(X) + Var(Y) in this case. 

2.  Suppose X and Y have the joint density function 

f(x,y) «x+y for 0 < x < 1, 0 < y < 1. 

(a) Show that P(X < 1/2, Y < 1/2) - 1/8. 

(b) Show that X and Y have the same marginal density function 

g(x) - x + 1/2 for 0 < x < 1,  and P(X < 1/2) - P(Y < 1/2) - 3/8.  [Note 

that P(X < 1/2, Y < 1/2) +  P(X < 1/2)P(Y < 1/2).] 

(c) It can be shown that, if Z - X + Y, then Z has the density 

function « 
[z for 0 < z < 1 

h(z) « 
[z(2 - z)     for 1 < z < 2. 

Show that E(Z) = 7/6, Var(Z) - 5/36, E(X) - E(Y) * 7/12, and Var(X) - Var(Y) 

* 11/144.  Thus,  E(X+Y) - E(X) + E(Y) but Var(X+Y) +  Var(X) + Var(Y). 
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3.  Suppose X and Y have joint density function 

f (x,y) - 1/2 for 0 < x < y < 2, 

so that the density function is constant over 

the shaded region in the figure at the right. 

(a) Show that P(X < 1) - 3/4. 

(b) Show that the marginal density 

functions of X and Y are  ^x(x) - (2-x)/2  for 

0 < x < 2 and fy(y) - y/2  for 0 < y < 2. 

(c) Verify that Z - Y - X has the same density function as  X by 

first noting that  1 - Fz(c) - P(Y - X > c) - (2 - c)2/4  for 0 < c < 2. 

(d) Show that E(X) - E(Z) - 2/3 and E(Y) - 4/3, verifying that 

E(Y - X) - E(Y) - E(X). 

(e) Show that Var(X) « Var(Z) - Var(Y) - 2/9. 

The definitions above for the "bivariate" case extend immediately to 

the "multivariate" case.  Let X-, X?, ..., X  be n random variables 

defined on the same sample space.  If the random variables X  are all discrete, 

then the joint probability function of X-,...,X  is defined by 

p(x1,x2,...,XR) - P(X1 ^ x1,X2 - x2, ..., XR - xn). 

Whether the random variables are discrete or not, the joint distribution 

function of X1,...,X is defined by 

FCXj^,...^) - P(XX £ xv   ..., XQ £ xn). 

The random variables are said to have a continuous joint distribution if there 

is a function f on R   (called the joint density function) such that 

P((X1,X2,...,Xn) e B) - Hr.-\  f(x1,...,xn) dx1...dxn 

for all n-dimensional rectangles B - (a-,b-)x(a9,b«)x..,x(a ,b ). 
x  x   z.     tL n n 
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The following theorem is the multivariate analog of Theorems 5-2 and 

5-4 in the univariate case. The proof in the discrete case is like that given 

for Theorem 5-2. 

Theorem 7-1. Let Y - g(X-,X2,...,X ) be a random variable such that 

E(Y) exists.  Then 

(a) if X., X„, ..., X  are discrete random variables having joint 

probability function p, 

E(Y) - Eg(xlfx2,...,xn)p(x1,x2>...,xn) 

where the summation is over all points  (x.,x~,...,x )  for which 

p(x1,x2,...,xn) > 0. 

(b) if X ,X , ...,X  have joint density function f, 

E(Y) - J00/00.../00 g(x1,x2,...,xn)f(Xj^ xn)dx1...dxQ. 

Example. A fair die is tossed three times. Let X. be the result on 

the ±l    toss.  Then the joint probability function of X-, X2, X3 is p(x.,x2,x3) 

3 
- (1/6)  for all (xlfx2,x ), x - 1,2,...,6. By the theorem above, if Y - XjX2

X3' 

then 

E(Y) - ExlX2x3/6
3, 

the summation being over all triples (x-,x2,x3) with x. - 1,2,...,6. But 

since Ex,x2x3 is the expansion of (1+2+3+4+5+6)3, E(Y) - (21)3/6 - (7/2)3. 

Note that, in this case, ECXjX^) - Ett^ -E(X2) -E(X3) . It is not true in 

general that, for any two random variables X and Y, E(XY) - E(X)«E(Y). 

Definition.  The random variables X., X», ..., X  are said to be 
  l  i. n 

independent if for all Borel subsets A. , A? ,... ,A  of R 

P(XlCAlf X2«A2, ..., XQcAn) - n^.jPO^cA^. 

It can be shown that this relationship holds for all Borel subsets k^ 

if and only if it holds for all sets k±    of the form A± - (-•, x]  for some x. 
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Hence, X^9  X2> ... X^ are independent if and only if their joint distribution 

function F is the product of the marginal distribution functions: 

F(x1,...,xn) ■ F1(x1)F2(x2^,,,Fn^xn^ for a11 x1,x2,...fxn, 

where F  is the distribution function of X .  In the discrete case, it follows 

immediately from the definition of independence that the joint probability 

function must be the product of the marginal probability functions at every 

point  (xlfx2,...,xn): 

p(x1,x2,...,xn) - Pi<
xi>P2**2)-#'pn*xn*' 

In the continuous case, if X. , X« X  are independent and X. has the 
l i n i 

marginal density function f., then the joint density can be taken as the 

product of the marginal density functions: 

f(x1,x2>... ,xn) - 
fi^xi^f2^x2)'"fn^Xn)* 

In a probability model for n independent experiments (see page 25), 

if X,  depends on the outcome of the k  trial only, then the random vari- 

ables X , X~, ..., X  are independent, in which case the joint distribution 

function (or probability function or density function) is the product of the 

marginal distribution functions (or probability functions or density functions). 

Examples. 

1. The random variables X-, X?, and X~ in the previous example are 

independent.  Here, the marginal probability function of X-  is p.(x) - 1/6 

for x-l,2,...,6. 

-(x-fy) 
2. The random variables X and Y having joint density f(x,y) - e 

for x > 0, y > 0 are independent. As was shown on page 71, the marginal 

density functions of X and Y were *x(
x) s e   for x > 0 and 

fY(y) ■ e"y for y > 0.  Hence, the joint density is the product of the 

marginal densities in this case. 
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3. Consider a sequence of n Bernoulli trials with probability p of 

success on each trial. Let X  be 1 or 0 according as the i  trial is a 

success or not. Then, since the probability function of X.  is 
xi    1_Xi 

P±(x1) - p (1-p)     for x±  - 0 or 1, 

the joint probability function of X-, X2, ..., X  is 

p(x1,x2,...,xn) -  n  P   (i-p)       -p   t(i-p)      *-m 

4. Let X., X.,..., X  be independent random variables, each having 

2 
a N(u,<7 ) distribution. Then the joint density function of X-, X0,...,X 

is      f(x ,x ,...,x ) - n    1  e 

2  2 
f« x -n/1  -n     i r 

■ (2n)   o     e 

Theorem 7-2.  If X and Y are independent random variables, then 

(a) so are U - g(X) and V - h(Y) , 

(b) E(XY) - E(X)-E(Y), 

(c) E[g(X)h(Y)] - E[g(X)].E[h(Y)], 

and (d) Var(X + Y) « Var(X) + Var(Y), 

provided that the indicated expectations exist. 

Proof:  (a)  P(U c A, V « B) - P(g(X) c A, h(Y) c B) - P(X « g'^A), Y c h"1(B)) 

- P(X t g'^A)) P(Y c h^CB)) - P(g(X) C A)P(h(Y)c B) 

- P(U e A)P(V c B).  [Note:  g"1^) is defined as 

{x: g(x) e A}.] 

(b)  In the discrete case, it follows from Theorem 7-1 that 

E(XY) - Lxy p(x,y) - £xy Px<x)-pY(y) - Ex px(x)-£y py(y) 

- E(X).E(Y). 

The proof for the continuous case is similar. 
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(c) This follows Immediately from (a) and (b). 

(d) Var(X+Y) « E(X + Y - E(X+Y))2 - EKX-^) + (Y-^)]2 

- E[(X - ^)2 + (Y - ^)2 4- 2(X - ^)(Y - ^)] 

- Var(X) + Var(Y) + 2E[(X - ^ (Y - ^) ]. 

By (c) , the last term is equal to E(X - ^)-E(Y - ^) - 0. 

Note from the proof of (d) above that, in general, 

Var(X + Y) - Var(X) + Var(Y) + 2E[(X - ^ (Y - u^)]. 

The expectation in the last term on the right, which has value 0 when X 

and Y are independent, provides a convenient measure of association between 

two random variables. 

Definition.  The covariance of two random variables X and Y is defined 

by 

Cov(X,Y) - E[(X - ^)(Y - uv>], 

provided the indicated expectations exist.  If X and Y have nonzero vari- 

2        2 
ances a»  and o^ , the correlation coefficient of  X and Y, denoted by 

p(X,Y)  or just by p if no ambiguity results, is defined by 

m  Cov(X.Y) m  E X-E(X)   Y-E(Y) 

X and Y are said to be uncorrelated if Cov(X,Y) - 0. 

Theorem 7-3.  Assuming that all the expectations indicated below exist, 

the following properties hold: 

(a) Cov(X.Y) - E(XY) - E(X)'E(Y) 

(b) Cov(X,Y) - Cov(Y,X)  and Cov(X,X) - Var(X) 

(c) Cov(aX + b, cY + d) - ac-Cov(X,Y) 

(d) CovCEa^, Y) - Eat Cov(X1»Y) 

(e) Var(X + Y) - Var(X) + Var(Y) + 2Cov(X,Y) 

" °X2 + °V2 + 2p °X°Y 
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(f) Var(Xn+X9+...+X ) - £n ^VarCX.) +2E Cov(X. ,X.) 
12     n    1-1    i i j 

(g) If X and Y are independent, Cov(X,Y) - p(X,Y) - 0 

(h)  If X1,X2>..., are independent, then VarCX^X^.. .+Xn> - J*      VarCX^ 

(i)  p(aX + b, cY + d) 
p(X,Y)   if ac > 0 

-p(X,Y)   if ac < 0 
undefined if ac - 0 

(j)  If Y - aX + b where a +  0,  then p(X,Y) - 1 if a > 0, 

and p(X,Y) - -1 if a < 0. 

The correlation coefficient between two random variables X and Y is 

a measure of the amount of linear relationship between them.  If Y is well 

approximated (or well "predicted") by a linear function of X, say a + bX, 

then |p| is close to 1.  Otherwise,  p is close to zero.  This is made pre- 

cise by the following theorem. 

Theorem 7-4.  Let X and Y be random variables having nonzero variances. 

(a) If a    and ß are the values of a and b which minimize 

S(a,b) - E[Y - (a + bX)]2,  then ß - pa^/^  ct  - E(Y) - ßE(X) , and 

S(cr,ß) - (1 - p2)a/. 

(b) -1 £ p(X,Y) £ 1, and |p| - 1 if and only if there exist constants 

a    and ß such that P(Y - a + ßX) - 1. 

Proof:  (a)  E[Y - (a+bX)]2 - E^Y-y^) - bCX-^) - (a-u^+b^)]2 

- Oy2 + b2o^2 + (a-vyHJu^)2 - 2b Cov(X.Y) 

9 1 9  9        9   9 9 

- b ax - 2bpaxOy + p Oy + (1-p )Oy + (*->Y * bV*x) 

■ (bc^ - pay)  + (1-p )Oy + (a-^ + b^) . 

Only the first and third terms depend on a and b, and these can be minimized 

by setting ß « pOy/ax and or - ^ - ßu^.  For these values of a and b, 

E[Y - (a+bX)]2 - (l-p2)Oy2. 
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2        2 2 
Since both E[Y - (or + ßx)]  and o^  are nonnegative and o^ t 09 

2 2 
it follows that  1-p iö, implying that  p £ 1 or  |p| £ 1.  If  p - 1, 

2 
then E[Y - (or + ßX) ] - 0, which implies that Y - or + ßX, except perhaps 

on a set of probability zero. 

Since min E(Y - a)2 - E(Y - u^)2 - o^2  (see Exercise 7, page 52) 

2        2  2 
and min E[Y - (a+bX) ]  - (1 - p )Oy , incorporating the random variable X 

into the "linear predictor" a + bX reduces the lowest attainable mean 

2 2  2        2 
squared prediction error from o^  to  (1 - p )ou .  Thus p  is the pro- 

portional reduction in mean squared error that results from including X in 

the predictor. 

The random variable or + ßX referred to in Theorem 7-4 is sometimes 

called the best linear predictor of Y based on X.  The line y - or + ßx 

is called the regression line of Y upon X.  This line can be written in 

the form: 

y - eon .    x - E(X) 

Examples. 

1.  A fair coin is tossed 3 times in succession.  Let X be  1 or 0 

according as the first toss results in heads or not, and let Y be the number 

of heads on all 3 tosses.  Then X and Y have the following joint proba- 

bility function: 

K 0        1 pY(y) 

0 

l 

2 

3 

1/8       0 

1/4       1/8 

1/8       1/4 

0       1/8 

1/8 

3/8 

3/8 

1/8 

Px(x) 1/2      1/2 1 
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Here, E(X) - 1/2, E(Y) « 3/2, Var(X) - 1/4, and Var(Y) - 3/4.  Since 

E(XY) - 1(1/8) + 2(1/4) + 3(1/8) - 1, Cov(X,Y) - E(XY) - E(X)E(Y) - 1 - (1/2)(3/2) 

- 1/4, and p(X,Y) - Cov(X,Y)/Oj.Oy - 1//T".  The regression line of Y 

upon X is 

y - 3/2  _±_   | 

/T/2   /T 1/2 

which can be written in the form y - x + 1. Note the significance of the 

2 
value of  p - 1/3 in this case. 

2. Suppose Y - X + U where X and U are independent.  (For example, 

in Exercise 1, U is the number of heads on the last two tosses.)  In this 

case, Cov(X,Y) * Cov(X,X + U) - Cov(X,X) + Cov(X.U) - o^, and  p(X,Y) - ^/(^Oy 

- Oy/Oy.  The best linear predictor of Y based on X turns out to be X + E(U). 

As a special case, suppose a coin which has probability p of turning up heads 

is tossed n times.  If X is the number of heads on first m(<n) tosses 

2 
and Y  is the number of heads on all n tosses, then o^ ■ mpq and 

2 ,  
Oy ■ npq so that  p - (Jxr/Oy  s *Wn.  Again note the significance of the 

value of p . 

3. Suppose X and Y have joint 

density f (x,y) - 2  for 0 < y < x < 1, 

so that the density function is constant 

over the triangular region in the figure 

at the right.  Then 

E(XY) » JJ/Q 2xy dy dx - Jjjjx3 dx - 1/4. 

The marginal density of X in this case is 

fx(x) - ft(x,y)dy - JQ 2 dy - 2x  for  0 < x < 1, 
—00 

so that E(X) * 2/3 and Var(X) - 1/18.  The marginal density of Y is 

fY(y) « Jy 2 dx - 2(1 - y)  for 0 < y < 1 

so that E(Y) = 1/3 and Var(Y) - 1/18.  It follows that Cov(X,Y) - E(XY) 

- E(X)E(Y) « 1/36 and p(X,Y) - Cov(X,Y)/o^Oy - 1/2. Thus, the regression 
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line of Y on X is y - x/2. 

4. Let  (X,Y) have joint probability function p(x.,y.) - 1/n where 

(x.,y.,), (x0,y0),...,(x ,y ) are any n points on the plane. Since this 
11    L    L n n 

situation usually arises in a context where the pairs (x.jy.) are regarded 

as being a sample from a larger population, the means and variances of X and 

Y are called sample means and sample variances in this case, and special 

— 2       2 
notation is introduced: x for E(X), s   for <x, , and r for p. 

Here, x - Dc±/n,  sx
2 - E(x± - x)

2/n «(Ex^/n)- x2, and similar formulas 

hold for y and s  . Omitting the subscripts i below, we can write 

r ■ Cov(X,Y)/s s  where 
x y 

Cov(X,Y) = L(x-x)(y-7)/n - (Dcy/n) - xy * [Dcy - n £xEy]/n, 

providing a convenient formula for hand calculations. 

2 2 
Since choosing a    and ß to minimize E(Y - a - bX) - £(y, - a - bx.) /n 

2 
amounts to choosing a    and ß to minimize L(y. - a - bx )   the resulting 

(x4»y4) 

(x3,y3) (x2,y2) 

(x^}) 

regression line is called the least 

squares regression line in this case. 

Applying the formulas which hold for 

any regression line, we see that the 

coefficients of the regression are 

given by ß - rs /s  and a  - y - ßx. 
y x 

Since r - Cov(X,Y)/s s , ß can be x y 

computed using the formula 

Cov(X.Y) m  £(x-x)(y-7)/n m  Dcy - (l/n)£x£y 

sv
2      E(x-x)2/n    Ex2 - (1/n) (DO2 

For example, the pairs of scores on the left below result from comparing 14 

students* diagnostic test scores (x) on a simple algebra test with their 

final exam scores (y) in a certain statistics course. A plot of the points 
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and the regression line is given on the next page. Note that the regression 

line passes through the point (x,y). 

x y Ex2 - 17080, Ey2 - 51517, Exy - 29466 

25 47 x - Ex/n - 484/14 - 34.57 

55 60 7- 2y/n - 839/14 - 59.93 

33 55         -22          2              2 
31 47 £(x-xr - Ex - (l/n)(Exr - 17080 - (484)Z/14 - 347.43 

33 60 E(y-y)2 - Ey2 - (l/n)(Ey)2 - 51517 - (839)2/14 - 1236.93 
35 56 
23 54 E(x-x)(y-y) - Exy - (l/n)ExEy - 29466 - (484) (839)/14 - 460.57 
41 65 

f7 
6

5l sx
2 - 347.43/14 « 24.82 

-^ — 8 
2 - 1236.93/14 - 88.35 

y 484 839 
ß - 460.57/347.43 - 1.326 

a « 59.93 - 1.326(34.57) - 14.10 

r - 460.57//(347.43)(1236.93)  - 0.703 
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Exerclses. 

1. Let X and Y have the joint probability function given in the 

example on page 69.  (a)  Show that Cov(X,Y) - 1/2, Var(X) - 1/2, and 

Var(Y) = 1, so that  p(X,Y) - /2~/2.  (b)  Show that the regression line of 

Y on X is y ■ x + 1. (c) Show that the regression line of X on Y is 

x - y/2. 

2. Let X and Y have the joint probability function in Exercise 1, 

page 71.  (a)  Show that Cov(X,Y) - 1/3 and p(X,Y) - -1/2.  (b)  In 

Exercise 1(c), page 72 you showed that Var(X + Y) - Var(X) - Var(Y) - 2/3. 

Recompute Var(X + Y)  using Theorem 7-3(e). (c)  Show that the regression line 

of Y on X is y - (3-x)/2. 

3. Let X and Y have the joint density function 

f (x,y) -x + y       for 0 < x < 1, 0 < y < 1. 

(See Exercise 2, page 72.)  Show that Cov(X,Y) - -1/144, p(X,Y) - -1/11, and 

the regression line of Y on X is y - (7-x)/ll. 

4. By Theorem 7-3(g), if X and Y are independent, they are uncorrelated. 

The converse of this theorem does not hold in general,  (a)  Show that, if 

X and Y have joint probability function p(0,0) - p(-l,l) ■ p(l,l) - 1/3, then X anc 

Y are uncorrelated but not independent. (b) Suppose X has a N(0,1) dis- 

tribution and Y - X2. Show that p(X,Y) - 0. [Hint: E(XY) - E(X3) - 0 in 

this case.] 

5. Let X and Y have joint density f (x,y) - 1/2 for 0 < x < y < 2 

as in Exercise 3, page 73.  Show that Cov(X,Y) - 1/9,  p(X,Y) - 1/2, and 

verify that the regression line of Y on X is y - (x + 2)/2. 

2 
6. Show that the constant  c which minimizes E(Y - cX)  is 

c - E(XY)/E(X2).  Use the result to deduce from E(Y - cX)2 * 0 that 

|E(XY)| £ »/E(X2)E(Y2).  (Cauchy-Schwarz Inequality.) 
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Deflnltion.  The random variables X and Y are said to have a bi- 

variate normal distribution with parameters §, T], a >  or » and p where 

ax > 0, a   > 0, and  |p| < 1 if the joint density of X and Y is given 

by f(x,y) «  ^  exp { *—- [(^)2 - 2p£=*)(£3L) + (*=V]r 
tnOxOyfe? 2(l-p2)  ax       ax  ay     °y 

ihis density function has a maximum at  (x,y) * (§»T|), and the coutours of 

the density function are concentric ellipses centered at  (§tT|) . Any plane 

perpendicular to the (x,y) plane cuts the surface f(x,y) in a curve of the 

normal form. 

Theorem 7-5.  If X and Y have the bivsriate normal density above, 

then 2 

(a) X ~ N(§, a    ), Y ~ N(T],a )» and the correlation coefficient of X 
* y 

and Y is  p; 

(b) X and Y are independent if and only if  p - 0; 

(c) if Z - a+bX+cY where either b^ 0 or c +  0, then Z has a normal 

2  2   2  2 
distribution with mean a+b§+cT] and variance b a      + c a     + 2bcp<y o  . x      y        x y 

Proof:  (a)  The proof that X and Y have the specified marginal dis- 

tributions follows from the fact that f(x,y)  can be written in the form 

where ß ■ pa /a » or - 1\  - ß§, and cp is the density function of the y x 

standard normal distribution.  Integrating out y after a change of variables 

to v - (y - a - ßx)/a /l-p2 yields fY(x) ■ — q> (—^) ,  which is the density 
y X     ax   ax 

of a N(5,a )  distribution.  A similar proof can be used to show that 

2 
Y ~ N(l|,a ). The proof that X and Y have correlation coefficient p 

will be given later in this section. 

(b) The joint density f(x,y)  factors into the marginal densities if and 

only if p - 0. 

(c) See Alexander M. Mood and Franklin A. Graybill, Introduction to 

the Theory of Statistics, Second Edition, McGraw-Hill, New York, 1963, p. 211. 
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Definition.  If X and Y have Joint probability function p(x,y), 

then the conditional probability function of Y given X - x is defined 

by 

P(y|x) - p(x'7^ provided p (x) > 0. 

If X and Y have joint density function f(x,y), then the conditional 

density function of Y given X ■ x is defined by 

*(y|x) - fiXf/\ provided fY(x) > 0. 

The definition for the discrete case is motivated by the fact that 

P(Y - y|X - x) - P(Xp"x
XI x)" 

y>       provided that px(x) > 0. 

The definition for the continuous case is motivated by a consideration of 

the conditional distribution function of Y, given X ■ x, which can be 

defined as 

F(y|x) « lim  P(Y £ y|x-h < X < x+h). 
h-K) 

If X and Y have a continuous joint density function f(x,y), then it 

can be shown that F(y|x) - Jy f(x,y') dy7fx(x).  (See H. Cra**r, 
—oo 

Mathematical Methods of Statistics, Princeton University Press, 1946, p. 268.) 

Taking the derivative with respect to y yields  f(y|x) - f (x,y)/fx(x). 

Note that, if X and Y are Independent, then the conditional distribu- 

tion of Y for any value of X is the same as the marginal distribution 

of Y. 

Definition.  The conditional distribution of Y, given X - x, is 

the distribution specified by the conditional distribution function F(y|x) 

defined above [or by p(y|x) or f(y|x)  in the discrete or continuous 

cases].  The conditional expectation of Y given X - x, denoted by 

E(Y|X - x),is defined to be the expectation of the conditional distribution. 



-87- 

The conditional variance, denoted by Var(Y|X ■ x), is defined as the 

variance of the conditional distribution. 

In particular, if X and Y have joint probability function p(x,y), 

then the conditional expectation of Y given X - x is given by 

E(Y|X - x) - £ y p(y|x) 
y 

for those values of x for which pY(x) > 0 and E|y|p(y|x) < °°.  If 

X and Y have joint density function f(x,y), then the conditional expec- 

tation of Y given X - x is given by 

E(Y|X - x) - J~ y f(y|x) dy 
—00 

for those values of x for which fx(
x) > 0 and J|y| f(y|x) dy < ». 

If X and Y are independent, then the conditional distribution of 

Y given X =» x is the same as the marginal distribution of Y so that 

E(Y|X - x) - E(Y) and  Var(Y|X - x) - Var(Y).  If Y is some function of 

X, say Y - g(X), then given that X - x, the conditional distribution of Y 

is entirely concentrated at the point g(x). Hence, in this case, 

E(Y|X - x) = E(g(X)|X.- x) - g(x),  and Var(Y|X - x) - 0. 

Definition.  Assume that E(Y|X - x)  exists for all x for which 

Px(x) > 0 lor fy(x) > 0 in the continuous case]. Then the conditional 

expectation of Y given X, denoted by E(Y|X), is the random variable 

having the value E(Y|X - x) when X - x. 

In particular, if Y - g(X), then E(Y|X) - g(X).  If Y and X 

are independent, then E(Y|X) - E(Y). Other examples will be given below. 

Although the definitions above are stated for the case that the 

conditioning variable X is a random variable, the definitions could just 

as well have been given for the more general case where X is a "random 

vector," i.e., X - (X..,...,X ) where the random variables X^^ are all 

defined on the same sample space. 
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Examples. 

1. A fair coin is tossed four times. Let X be the number of heads 

on the first two tosses, and let Y be the number of heads on all four 

tosses. Then the joint probability function of X and Y is given on 

page 69.  Given X ■ 1, the conditional probability function of Y is: 

p(0|l) = 0, p(l|l) = 1/4, p(2|l) - 1/2, p(3|l) - 1/4, and p(4|l) - 0. 

Thus, E(Y|X - 1) - 1(1/4) + 2(1/2) + 3(1/4) « 2.  In this case, the random 

variable E(YJX) has value 1 when X - 0, 2 when X - 1, and 3 when 

X = 2,  so that E(Y|X) - 1 + X. 

2. As a generalization of example 1, let Y be the number of 

successes in n + m Bernoulli trials with probability p of success on 

each trial, and let X be the number of successes on the first n trials. 

Then 

,   v   ,11, x n-x, m v y-x m- (y-x)   ,nN , m v y n+m-y r 

p(*,y) - (x)p q  (y_x>P  q  '  - (x)(y-x p q 

x - 0,1,...,n, y * x,x+l,...,x+m. 

Since X has a binomial distribution with parameters n and p, 

p (x) ■ ( )p q "' ,  and it follows that the conditional probability function 
A X 

of y for given x is 

P(y|x) - (v
m)py-Xqm"(y"X) for y-x,x+l xtn. y-x 

Therefore the conditional distribution of Y is the same as the distribution 

of x + Z where Z has a binomial distribution with parameters m and p. 

It follows that E(Y|X ■ x) « x + mp and Var(Y|X - x) - mpq. Note that in 

this case the random variable E(Y|X) « X + mp  is the same as the best 

linear predictor of Y based on X.  (See Example 2, page 80.)  Theorem 

7-6(a) below states the general result that E[E(Y|X)] - E(Y). This can be 

verified directly in this case as follows: 
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E[E(Y|X)] - E(X) + mp - np + mp « (n + m) p - E(Y). 

3.  If X and Y have a bivariate normal distribution, then the 

2 
marginal distribution of X is N(l*x>Oy )  by Theorem 7-5, and it 

follows from the representation of the bivariate normal density f(x,y) 

at the bottom of page VII-18 that the conditional density of Y for X - x 

is 

f(y|x) - ^} - —±— 9 hlZjx^ fx(x)    oy/i^    I o^/i^r 

where ß ■ pa«/a.,or B u^ - ßuw., and cp is the standard normal density 

function.  Thus, given X = x, the conditional distribution of Y is 

2   2 
N(of + ßx, Oy (1-p )), and the conditional expectation of Y given X is 

E(Y|X) - or + ßX, which again coincides with the best linear predictor of 

Y based on  X.  In this case, the conditional variance of Y given 

2   2 X » x is Oy (1-p )  for all values of x. 

Theorem 7-6.  Let X and Y be random variables such that the expecta- 

tions Indicated below exist. 

(a) E[E(Y|X)] - E(Y). 

(b) E[g(X)|x] » g(X). 

(c) If X and Y are independent,  E(YJX) - E(Y). 

(d) E[g(X)h(Y)|X] = g(X) E[h(Y)|x]. 

(e) For any constants a and b, E[aY + b|X] - a E(Y|X) +  b. 

(f) If U and V are random variables having finite expectations, 

then E(U + V|X) - E(U|X) + E(V|X). 

Proof:  (a) In the discrete case, 

E[E(Y|X)] - £[L y P(y|x)] px(x) -EEy p(x,y) « E y E p(x,y) - £y PY(y) - E(Y). 
x y x y y  x 
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A similar proof can be given in the continuous case. 

(b)-(f). Parts (b) and (c) were proved earlier. The proofs of the 

other parts are omitted. 

Theorem 7-4 derived the best linear predictor of Y based on X in 

the sense of mean squared prediction error and showed that 

E(Y - or - ßX)2 - (1 - p2)^2. 

o 
Theorem 7-7.  Ajnong all functions 6(X),  E[Y - 6(X)]  is minimized 

by 6(X) - E(Y|X).   The mean square prediction error is given by 

E[Y - E(Y|X)]2 - (1 - Tl2)^2 where T\  - p(Y, E(Y|X)). [T\2    is called the 

correlation ratio of Y and X.]. 

Proof: Let g(X) - E(Y|x) - 6(X).  Then 

[Y - 6(X)]2 - [Y - E(Y|X) + g(X)]2 - [Y - E(Y|X)]2 + 2g(X)[Y - E(Y|X)]+ [g(X)]2. 

Since the next to the last term on the right has expectation zero by parts 

(a) and (d) of the previous theorem, 

E[Y - 6(X)]2 - E[Y - E(Y|X)]2 + E[g(X)]2 *E[Y - E(Y|X)]2. 

The fact that E[Y - E(Y|X)]2 - (1 - T}2)^2 follows immediately from 

Theorem 7-4(a) by observing that the best linear predictor of Y based 

on E(Y|X)  is E(Y|X). 

Since the mean squared prediction error using the best linear function 

of X is E[Y - a  - ßX)2 - (1 - p2)^2 where p is the correlation coefficient 

2       2 2   2 
of X and Y,  it follows that 1 - p is 1 - T\  , implying that  p £ J\  . 

2   2 
If it happens that E(Y|X)  is linear in X, then p - J\      and 

E(Y|X) - a + ßX where ß - pOy/a, and a - u^ - ß^.  In particular, if 

X and Y have a bivariate normal distribution, then it was shown on page 

89 that E(Y|X) - a + ßX where ß - po^/(^.  This proves a result that 

was stated but not proved earlier—namely, that the parameter p in the 

bivariate normal density function is the correlation coefficient of X and Y. 
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The following example Illustrates how the above theory Is sometimes 

applied to estimate parameters of distributions in those instances where 

the parameters themselves can be considered to be random variables. 

Example.  You can observe a sequence of n Bernoulli trials with 

probability y of success on each trial.  Suppose that the value of y 

is unknown, and you want to guess y based on the number of successes, 

X, in n trials.  In the absence of any information on the values of y, 

you might guess y using the "estimator" X/n.  This estimator has expec- 

tation E(X/n) - y and variance Var(X/n) - Var(X)/n2 - ny(l-y)/n2 - y(l-y)/n. 

Now suppose that you are informed (or are willing to assume) that the 

value of y was randomly generated according to a distribution having 

density function f(y)  on (0,1).  That is, y can be regarded as the 

value of a random variable Y having density function f(y), and the con- 

ditional probability function of X given Y ■ y is 

P(x|y) - O yX (l-y)n"X for x = 0,1,...,n. 

Guessing the value of Y based on X amounts to "predicting" Y using 

some function of X.  If the mean squared prediction error is an appropriate 

goodness criterion for your estimator, then the theory above suggest« using 

E(Y|X)  to estimate y.  Here, X is discrete and Y is continuous, so that 

the joint distribution of X and Y is neither discrete nor continuous. 

However, using the fact that 

P(X e A, a < Y < b> -2/3 P(*|y) f(y) dy, 
x«A 

one can show that the conditional density of Y given X - x is 

f(v|x) « pU|y)f(y) .   
f(y,X)   Px«    Jj 

n-x 
y (l-y)"  f(y) 

kn-x 
fo y (i-y)  «<y> <*y 

Thus, given the density function f(y), one can compute the conditional 

expectation of Y for any\alue of X.  In particular, if f(y) - 1 for 

0 < y < 1, then 
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E(Y|X - x) - Jj y  f(y|x) dy - jj y*4"1 (l-y)11^ dy/jj yX (l-y)n"X dy. 

Since J* ya(l-y)ß dy - a\  ß!/(a + ß + 1) 1  for a - 0,1,..., ß - 0,1,... 

(see Alexander M. Mood and Franklin A. Graybill, Introduction to the Theory 

of Statistics, Second Edition, McGraw-Hill, New York, 1963, pp. 129-131), 

it follows that 

WYIY • .1 . (x+1) t (n-x) t ,  (n+1) t   x+1 
E(Y|X « x} -   (n+2)|     xl(n_x)|  n+2 

Thus, if Y is chosen according to a uniform distribution on (0,1), then 

the estimator E(Y|X) ■ (X+1)/(n+2) has the smallest mean squared predic- 

tion error among all functions of X. 

Exercises. 

1. Suppose X and Y have joint density function f(x,y) - 2 for 

0 < y < x < 1. (See Example 3, page 80.)  Show that (a) given X - x 

the conditional distribution of Y is a uniform distribution on (0,x), 

(b) E(Y|X) =* X/2, and (c) E(X|Y) - (l+Y)/2. Verify directly that 

E[E(X|Y)] = E(X). 

2. Let X and Y have the joint probability function given at the top 

of page 72. Verify that (a) E(Y|X - 0) - 3/2, (b) E(Y|X) - (3-X)/2. 

2 
3. Suppose X has a uniform distribution on (-1,1), and Y - X . Show 

that (a) X and Y are uncorrelated, (b) the regression line of Y on X 

is y - 1/3, (c) the correlation ratio between X and Y is 1. 

4. If the conditional variance of Y given X is defined by 

Var(Y|X) - E([Y - E(Y|X)]2|X), 

show that 

(a) Var(Y|X) - E(Y2|X) - [E(Y|X))2 

(b) Var(Y) =* E[Var(Y|X)] + Var[E(Y|X)]. 

5. Show that if X and Y have joint density f(x,y) - e"y for 

0 < x < y < «>, then E(YJX) -X+1, E(X|Y) - Y/2, and p(X,Y) - VT"/2. 
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SECTION VIII. - SOME SAMPLING THEORY 

Reference: 

Paul L. Meyer, Introductory Probability and Statistical Applica- 
tions,  2nd Edition, Addison-Wesley, 1960, Chapters 12 and 13. 

By a random sample of size n from a population having distribution 

function F is meant a sequence of n i.i.d. (independent and identically 

distributed) random variables X., X„, ..., X , each having distribution 
l       Z n 

function F.  Such a sample might result from choosing an element at random 

from some population, observing the value X.  of some characteristic of 

the element, replacing the element, choosing a second element, observing 

the value X» of the same characteristic of the second element, and so 

forth.  Alternatively, the sequence X-, X , ..., X  may result from ob- 

serving n independent trials of the same type.  For example, X. might 

be the sum of the results on the 1th trial when two dice are tossed repeatedly. 

Or X , X?, ..., X  might be the waiting times between n successive tele- 

phone calls coming into an exchange. 

In most statistical applications the distribution of the X 's is un- 

known and one attempts to make Inferences about the distribution based upon 

the values of the observations X , X., ..., X .  For example, one might want 

to estimate the mean or standard deviation of the distribution from which the 

X 's are drawn.  Quite often the statistics commonly used in drawing such 

Inferences involve sums or averages of the X
J'
S
 

or functions of the X.'s. 
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Theorem 8-1. Let L, X«t t..»X  be i.i.d. random variables, each 

2 
having mean ^ and finite variance a . 

(a) If X- (X1+X2+...+Xn)/n, then E(X) - u. and Var(X) - a2/n. 

(b) (Lav of Large Numbers)  For any £ > 0, P(|X - u.| * €)  tends 

to 0 as n becomes infinite. 

Proof:  (a) E(X) - (l/n)£E(X ) - n^/n - u-. 

Var(X) - (l/n2)L,Var(Xi) = na
2/n2 - a

2/n. 

(b)  By Chebyshev's Inequality (see page 50). 

P(|X - u-| * e) * Var(X)/e2 - a2/ne2. 

The last member on the right tends to 0 as n -* ®. 

—    2 — 
Since Var(X) - a  /n, as n increases the distribution of X be- 

comes more and more concentrated about E(X) - u..  If, instead of consider- 

ing the average of X., X0, ..., X , one considers the sum S - X,+X„+...+X , 
l  z       n n   1  Z     n 

2 2 
then E(Sn) - nu. and Var(S ) ■ no  so that if a   > 0 the distribution 

of S  becomes increasingly spread out as n increases 

Consider the "standardized" variable  (S - n^)/or^n~~ . This random 

variable has mean 0 and variance 1 for all values of n. The theorem 

below states that, no matter what the initial distribution of the X 's is, 

the distribution function of  (S - nu,)/o*/n~~ tends to the distribution 
n   ^ 

function of a standard normal distribution. 

Theorem 8-2.  (Central Limit Theorem.) Let X-, X2, ... be i.i.d. 

2 
random variables with mean u. and finite variance a > 0, and let 

S ■ X-,+X„+...+X .  For any constants a and b with -» £ a < b £ •, 
n   1 2     n 

S - nu 
lim P(a < — < b) - *(b) - f(a) 
n-H»       cr^n 

where $ is the distribution function of a standard normal distribution. 

Proof:  See Meyer, op. cit., pp. 252-253. 
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Thls Is a generalization of the DeMoive-LaPlace Central Limit Theorem 

stated earlier in Section VI for the case where the X 's have Bernoulli 

distributions.  The theorem suggests that for "large" values of n one can 

approximate probabilities of the form P(S £ k)  as follows: 

S - nu  i i 
P(Sn * k) - P< -2 s k-JLSk ) i » { LjL.Sk ). 

Depending on the distribution of the X. fs, this "normal approximation" for 

sums of i.i.d. random variables is usually quite good even for relatively 

small values of n  (say,  n - 25 if the X 's have Bernoulli distribu- 

tions with p close to 1/2, and n - 10 if the X's have uniform or exponen- 

tial distributions).  If the X *s have normal distributions, the approxima- 

tion is exact because in this case it can be shown that S  also has a normal n 

distribution.  (See Theorem 8-6 below.) 

Note that, since 

_n JÜ . x -  1» 
CP^n     o/Sä 

the Central Limit Theorem could just as well have stated that the average 

of n 1.1.d. random variables has a limiting normal distribution as n 

becomes infinite. 

Example.  Suppose that light bulbs have lifetimes in hours that can be 

assumed to have a distribution with mean 1000 and standard deviation 500. 

Find the probability that the average lifetime of 100 such lightbulbs will 

be greater than 1100 hours. 

Let X ,X2,...,X100 be the lifetimes in hours, and let X - EX±/100. 

Assuming that the X 's are a random sample from a distribution having mean 

1000 and standard deviation 500, it follows that E(X) - 1000 and 0£ - 500//100 - 50. 
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Hence, 

p(x > iioo) - i - p(^i2po t no05- iooo) • j _ i{20) . 0„23> 

Exercises. 

1. Suppose that 10 storage batteries B , B , ..., B-Q are used in 

the following way.  First, B-  is used until it fails, at which tine it 

is replaced by B«.  Then, when B2 fails, it is replaced by B~, etc. 

If these batteries are chosen at random from a population having mean life- 

time 12 hours and variance 2.5 hours, what is the approximate proba- 

bility that the total time of operation of the batteries will exceed 110 

hours?  Ans. 0.98. 

2. Suppose 100 random digits are generated.  That is, 100 independent 

trials are conducted in which one of the digits 0,1,2,...,9 is chosen at 

random.  Approximate the probability that  (a)  the digit 0 occurs more 

than 15  times among the 100 random digits, (b)  the sum of the 100 digits 

exceeds 500,  (c)  the average of the 100 digits lies between 4.0 and 5.0. 

Ans.  0.03,  0.04,  0.92. 

3. Suppose that, when the heights of 300 plants are measured to the 

nearest inch, the rounding errors are independent and uniformly distributed 

over  (-0.5, 0.5).  If the 300 heights are averaged after rounding, what 

is the probability that the magnitude of the total error due to rounding 

exceeds 0.02? Ans.  0.23. 

4. In pari-mutuel wagering, the racetrack (or gambling house) takes 

a fixed percentage of the total amount bet and returns the rest to those 

who have bet on the winning horse.  For example, suppose that the total 

amount bet on a certain race is $6000, of which $2000 is bet on Horse #1, 

including your $2 bet.  If the track "take" is $1000, then the remaining 

$5000 is divided up among the holders of winning tickets on Horse #1.  Thus 
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the "betting odds" on Horse #1 are said to be "5-to-2"—i.e., a $2 bet will 

yield a return of $5 for a net gain of $3.  Perhaps a reasonable assessment 

of the probability that Horse #1 will win is the proportion of the total 

amount of the money that is bet on Horse #1, which is 1/3 in this case.  If 

you repeatedly play a game like this, on each play you either win $3 with 

probability 1/3 or lose $2 with probability 2/3, (a)  find the expectation 

and variance of your "net gain" after 18 plays of the game, and (b)  find the 

approximate probability that you will be ahead after 18 plays. 

Ans.  -6,  100,  0.23. 

Theorems 8-1 and 8-2 above are usually applied in situations where the 

random variables X-, X„, ..., X  are the values of the observations them- 
l  z       n 

selves.  However, the theorems apply equally well to transformations of the 

observations in the following sense. 

Theorem 8-3.  Let Y - g(X )  where X , X2> ..., X  are i.i.d. random 

variables, and let Y - Z(±/n    and Tn - Vi±.     If Yi has mean 1) - E[g(X)] 

2 
and variance T < °°> then 

(a) E(Y) - 1] and Var(Y) - T
2/n, 

(b) for any £ > 0, P( |Y - T]| £ Q  ■* 0  as n +  », 

(c) for any constants a and b with -• £ a < b £ °° 

Tn-nTl lim P(a < — < b) - *(b) - #(a). 
n->»      T*^n 

Proof:  Since the random variables Y-, Y-, ..., Y  are i.i.d. [the 

independence of the Y.'s is an obvious generalization of Theorem 7-2(a)]f 

these results follow immediately from Theorems 8-1 and 8-2. 

The above theorems are of fundamental importance in statistics.  Given 

a random sample X., X2, ..., X  from a distribution having unknown mean 
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2 
u, and variance o  » one can estimate ^ using the value of the estimator 

X.  That is, if the observed values of X.,X0, ..., X  are x,, x0, ..., x , 
I  z       n       i  z       n 

then the estimated value of ^ f°r tnat particular sample is x " £x /n, 

the observed value of X.  The goodness of an estimator is usually measured 

by the extent to which the distribution of the estimator is concentrated 

around the parameter being estimated.  As we shall see later, there may be 

other estimators that are better than X in particular instances, but X 

has certain appealing properties.  By Theorem 8-1, the distribution of X 

is "centered" at u, in the sense that E(X) - ^ for all values of u..  Also 

the variance of X is only 1/n times as large as the variance of each of 

__ 2 
the original X 's.  If n is large enough, X is approximately N(u,, a /n) 

2 
so that, if a  is known, one can use the normal approximation to approximate 

the probability that X will deviate from ^ by more than any prespecifled 

amount e > 0: 

P(|X-^| >,) -Ppl>-L-Ii 2*^ 
\o/&     o/M     '  \o//n"j* 

2 2 
If o      is unknown, one can derive an estimator of o  using the fact 

2     2    2 
that a    - E(X ) - u.  where X has the same distribution as the X's.  By 

2 2 
Theorem 8-3, EX. /n has expectation E(X ).  Therefore, one can estimate 

a      using 

2   ,„,, 2,  x   ~2 
i 

a - (DC//n) - u. 

where £ is some estimator of ^.  If one uses £ - X, the resulting esti- 

mator is the "sample variance" 

S2 - (2X1
2/n) - X2 - E(X± - X)

2/n. 

2 2 2    2 
However,  S  is a "biased" estimator of a      [i.e., E(S ) + a  1 because 

E(X2) - Var(X) + E2(X) - (cj2/n) + u.2, implying that 

E(S2) - E(X2) - (a2/n) - u2 - a2- a
2/n . a

2(n-l)/n. 
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2 
To obtain an unbiased estimator, we can multiply S  by n/(n-l), yielding 

the following alternative estimator: 

2      i:(X1 - X)
2  DC1

2 - nX2 

° =   S3    *   n^l 

Theorem 8-4.  Let X.. , X„, ..., X  be i.i.d. random variables having mean 

u. and variance a  • 

2 — 2 
(a) The sample variance    S    ■ L(X.   - X)   /n has expectation 

E(S2) « CT
2(n-l)/n. 

2     -2       — 2 
(b) An unbiased estimator of a  is a ■ L(X -X) /(n-1). 

(c) An unbiased estimator of Var(X)  is b In. 

Part (c) above enables us to attach a measure of reliability to X as 

2 2 
an estimator of u, even if a  is unknown.  If a  is known, the standard 

  o   
deviation of X is a/^  .  If a  is unknown, the variance of X can be esti- 

2        2 
mated by a /n (or S /n).  The square root of the estimated variance (called 

the standard error of X) is an estimate of the standard deviation of X. 

The reader should not infer from the above that the estimators X and 

~2 
a      are necessarily good estimators in all circumstances.  Nor is it the 

A2 
case that the unbiased estimator a  is necessarily preferable to the biased 

2 
estimator S .  In the next section, examples will be given to indicate that 

—      -2 
both X and a  can often be improved upon, depending on the nature of the 

2 
distribution from which the random sample is taken.  Also, S  is a better 

-2 
estimator than Q  according to a certain goodness criteria that will be 

introduced later. 

Definition.  Let X., X2, ..., X  be a random sample from a population 

having distribution function F.  The order statistics corresponding to the 

random sample are defined by 
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X(l) * min^xi»X2»*••»Xn^» 

X,2> ■ next largest of the X 's, 

X(n) - max(X1>X2,...,Xn). 

The sample range is defined by R « X, * - X.-v, and the sample median by 

X[(n+l)/2] if n i-odd«d (l/2)[X(n/2) +X(n/2 + 1)] if n is even. 

The sample (empirical) distribution function of X., X.v•..9X  is defined 

for all x by 
number of X 's having value £ x 

F (x) 
n^ ' n 

For given values of the X 's, the sample c.d.f. (cumulative distribu- 

tion function) is a step function having jumps of size 1/n at ths values 

X..v, X,2v,...,X, x.  The figure below depicts the case n - 4. 

— r 

Note that  F 
n 

*(1)   X(2)      x(3) x(4) 
is a discrete distribution function that varies from 

sample to sample.  Let x De a random variable having this (conditional) 

distribution function.  Then the conditional expectation of x given the 

sample random variables X., X«,..., X  is EX/J\/n " DC./n • X» and the 

— 2 
conditional variance of x i8 tne sample variance E(X. - X) /n. 

_ 2 
Just as the sample mean X and the sample variance S  can be con- 

2 
sidered as estimators of the population mean u. and variance a t the 

sample c.d.f. can be considered as an estimator of the population 
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dlstrlbution function.  The following theorem shows that  F  Is an unbiased 

estimator of F. and as n becomes Infinite, F  tends to F for all values 

of x. 

Theorem 8-5.  Let F  be the empirical distribution function of a 

random sample X.. , X2,..., X  from a population having distribution function 

F.  Then 

(a) E[F (x)] - F(x)    for all x, 
n 

(b) Var [Fn(x)]- F(x)[l - F(x)]/n, 

(c) P(|F (X) - F(x)| 2s c) -» 0 as n ■+ • for all values of x and any e > 0. 

Proof:  Note that F (x) - Y where Y « 1 or 0 according to 

whether X £ x or X > x.  Here Y  has a Bernoulli distribution with 

parameter p - P(Xi £ x) - F(x).  By Theorem 8-3, E[Fn(x)] - E(Y) - F(x)  and 

Var[F (x)] - F(x) [l-F(x) ]/n, which tends to zero as n-~°. 
n 

Exercises. 

1. A random sample of size 25 is taken with the result that Ex » 50 

2 —        2        ? 
and Ex  - 200.  Compute the values of  (a)  X,  (b)  S ,  (c) Q 9     (d) Q//^. 

Ans.  (a)  2,  (b)  4,  (c)  25/6,  (d)  0.41. 

2. Show that if X., X«,...,X  are independent, Bernoulli random 

2 
variables with parameter p, then the formula for S  in this case re- 

o       __   

duces to S - X(l - X), and the standard error of X is a/^n "i/v/i _ v"WC -IV 

3. Let X-, X?  Xinn ^e a random sample of 100 IQ scores from a 

normal distribution having unknown mean u. but a known standard deviation 

a * 16.  In this case X has a normal distribution by Theorem 8-6 below. 

(a) Compute P(|X - uj £2). (b) Suppose you can choose a larger 

sample size to increase the reliability of X. How large a sample would 

you need to assure that P(|X - i»| £ 2) 2t 0.95? Ans.  (a)  0.79,  (b)  246. 
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4.  Let X., , X0,...,X  and Y,, Y„,...Y  be two independent random 
1 Z     m       1  l n 

samples such that E(Xi> « §, Vartt^ - Q
2
, E(Y ) - T|, and Var(Y ) - T

2. 

Such a model might arise if the Y *s correspond to the responses of n 

individuals who had received a special treatment of some kind, and the 

X.fs are the corresponding responses for individuals in the control group. 

Let 6 - 7] - § be the average effect of the treatment. 

(a) Show that an unbiased estimator of the treatment effect 6 is 

*  — — o o 
6 - Y - X, and its variance is Var(6) - (T /n) + (or /m) . 

(b) Show that an unbiased estimator of Var (S)  is  (•? /n) + (a /m) 

where Q
2
  « Ett^X) 2/(m-l) and T

2
 - E(Y -Y)2/(n-l) . 

2 2 2 (c) If a   - T » show that an unbiased estimator of a  is the 

"pooled" estimator 

2  L(Xt-X)
2 4- ^(Yj-Y)2 

a "      n-Hn-2 

Let X., X2,...,X  be n random variables defined on the same sample 

space. For certain statistical applications, it is necessary to derive the 

exact distributions of certain functions of the X.fs, such as X, Ea.X., 

max(X1, X?,...,X ), etc. There are certain standard techniques for deriving 

such distributions that are treated in most statistics texts.  (See, for 

example, Robert V. Hogg and Allen T. Craig, Introduction to Mathematical 

Statistics, Second Edition, The Macmillan Company, New York, Chapter A.)  You 

have already used one general technique several times in deriving density 

functions of transformed variables by first finding their distribution functions 

and then taking derivatives. With only a few exceptions below, we shall not 

need the other standard techniques for the distribution theory in this course, 

and appropriate references will be cited when results are given without proof. 



-103- 

The following theorem states some results about the exact distributions 

of sums of random variables. Many of these results are somewhat obvious from 

the discussion of the models in Section VI.  For notational convenience below 

we shall use abbreviations such as  "X ~ Binomial(n,p)" to denote "X has a 

binomial distribution with parameters n and p." 

Theorem 8-6.  In each of the following, assume that X-, X«, ..., X 

are independent random variables. 

(a) If X ~ BinomiaKn ,p), then EX. ~ Binomial(En^p). 

(b) If X ~ Poi88on(X ), then EX ~ Poisson(EX ). 

(c) If X. ~ Geometric(p), then EX. ~ Negative Binomial(n,p). 

(d) If X± ~ Negative Binomial (r.,p) , then EX± ~ Negative Binomial (Er^p) 

(e) If Xt - N(Ui,ai
2) , then Ea^ ~ NCEa^.Ea^2) • 

(f) If X± ~ Gamma (r^X),  then EX± ~ Gamma (Er ±t\) . 

(g) If Xt ~ CauchyCu^.X^ then E*^ ~ Cauchy(Ea^.Ea^) . 

Proof: 

(a) Consider a sequence of Bernoulli trials with probability p of 

success on each trial.  Let X,  be the number of successes on the first n^ 

trials, X2 the number of successes on the next n2 trials, and so forth. 

Then X-, X_» • - • »X  are independent and X ~ Binomial(n.,p).  Since EX. 

is the total number of successes on all En.  trials, EX.  has a binomial 

distribution with parameters En.  and p. 

(b) Consider Y - X, + X2 where X.  and X2 are independent, 

X ~ Poisson(X). X2 ~ Poisson(^) .  It suffices to show that Y ~ Poisson(x+u,) , 

since the result for the sum of n random variables then follows by mathe- 

matical Induction.  For y - 0,1,2,... 
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P(Y - y) - Lxü0 PCX, - x, X2 - y-x) - zJmQ ^f ^^ 

" ~T\  Ex=0 xTG-x) 1 X »"   " -y|  (X4^ 

(c)-(d)  These can be proved as in (b) above. 

(e)-(g)  In general, if T - U + V where U and V are independent 

random variables having density functions g(u)  and h(v)  then T has 

density 

f(t) - lw  g(u) h(t-u) du, 
—00 

because the distribution function of T is 

F(t) - P(T £ t) - P(U + V £ t) - J°° Jt"U g(u) h(v) dv du, 
—OO  —00 

and the derivative of the double integral on the right is f(t). With this 

simplification, the derivation of parts (e)-(g) is straightforward but tedious, 

and the proofs are omitted.  The proof of (e) for the case n - 2 is a 

special case of Theorem 7-5(c), which states that linear functions of random 

variables having a bivariate normal distribution have normal distributions. 

Note that by part (f) of the theorem that if X , X2,...,X  are i.i.d. and 

X ~ Cauchy(u,,X) , then X has exactly the same distribution as each of the 

individual X 's.  Hence, in this case, the distribution of X does not 

become more and more concentrated as n increases nor does the distribution 

of  X become increasingly normal as n ■* «.  Why is this not a counter- 

example to Theorems 8-1 and 8-2? 



-105- 

2 
Definition.  A random variable X is said to have a chi-square (x  ) 

2 
distribution with n degrees of freedom [abbreviated X ~ x (n) 1  *■* x 

has the same distribution as E. . Z.  where Z, , Z„,...,Z  are inde- 
1"1 1 i  l n 

pendent standard normal random variables. 

Random variables having chi-square distributions occur frequently in 

2 
statistical applications.  In particular, in sampling from a N(u.,cr ) dis- 

tribution, the estimators S  and a  introduced earlier in this section 

are both multiples of chi-square distributed random variables.  This applica- 

tion will be discussed later in this section.  The reason for calling the 

parameter n the number of "degrees of freedom" will become clear later. 

For now the student should ignore this peculiar terminology and merely re- 

2 
gard the parameter n as the number of terms in the sum L Z  . 

Theorem 8-7.  If X~ x
2(n), then 

(a) X has a gamma distribution with parameters r - n/2 and X - 1/2, 

(b) E(X) - n, Var(X) - 2n. 

Proof: 

(a) If n - 1, the distribution function of X for x > 0 is 

F(x) « P(X ü x) - P(Z2 £ x) - PC-^c < Z < £) - #(v^) - f (-&)  - 2*(v/x') - 1, 

Therefore, the density of X is 

f(x) - F'(x) - 2cp(yx")/(2^T) - (l//2^) e"x/2     for x > 0. 

Comparing this with the density of a Gamma(1/2,1/2) distribution (see Table 1, 

Section VI) and recalling that T(l/2) - *4T, we see that X ~ Gamma(l/2,l/2). 

2 
It follows from Theorem 8-6(f) that Z  Z± ~ Gamma(n/2,1/2). 

(b) This follows from the fact that the expectation and variance of a 

2 
Gamma(r,X)  distribution are r/X and r/\ .  (See Exercise 1, page 64.) 
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The figure on the next page shows the graphs of the chl-square density 

functions for 1, 2, 4, and 6 degrees of freedom. As the number of degrees 

of freedom increases, the density function becomes more symmetric about its 

mean.  Since the chi-square distribution is the distribution of a sum of i.i.d. 

random variables, it has a limiting normal distribution by the Central Limit 

Theorem.  The normal approximation to the chi-square distribution becomes quite 

good for n £ 20. 

Table 1 on the following page gives the values of x for which the 

distribution function F(x) of a chi-square distribution has certain speci- 

fied values. Suppose n - 20. Then the entry 31.4 in the 20th row under the 

2 
column headed .950 means that if X ~x <2°) » then p<x < 31.4) - 0.95. An 

equivalent way of saying the same thing is to say that 31.4 is the 95th per- 

centile (or percentage point) of a chl-square distribution with 20 degrees of 

freedom. 

How well does the normal approximation work in this case? Since E(X) - 20 

and Var(X) - 40, the normal approximation of P(X < 31.4) is given by 

P(X < 31.4) i f(31'4 " 2°) - *(1.80) - 0.96. 

This is within 0.01 of the actual probability 0.95 in this case. 

2 
Theorem 8-8.  If X-, X2,...,X  are i.i.d., each N(u.,cr),  then 

(a) Ei^1(X1 - u-)2/a2~x2(n> 

(b) E*(X - X)2/a2 has a x'tn-l)    distribution and is independent of X. 

Proof:  (a)  Set Z - (X - u.)/o. Then Z-, Z2,...fZ  are i.i.d., each 

N(0,1).  Therefore, Z Z±
2  - Z(X±  - u.)2/a2 -X^*)- 

(b) The proof of (b) will be omitted, but its plausibility is clear from 

the following considerations. First, one can verify directly that 

L(Kt - u.)2 - E(Xt - X)
2 -I- n(X - u.)2. 
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0   1   2   3   4   5   6   7   8   9   10  11  12 

Chi-square Density Functions. 



Table 1 

PERCENTAGE POINTS OF A CHI-SQUARE DISTRIBUTION 

^^-^    f 1 .005 .010 .025 .050 .100 450 400 .750     1 .900 .950 .975     ' .990 .995 

1 .0*393 .0«157 .0*093   ' .0*393 .0159 .102 .455 142 2.71 344 5.02 0.63 7.88 
2 .01«     1 .0201 .OSOC .103 .211 47i 149 2.7'      1 4.0 5.9 1 741 9.2, 10.6 
• .0711 .113 .316 452 .594 1.21 247 4.1 6.25 741 94» 11.3 128 
4 407 .297 .494 .711 1.06 1.92 346 541    ' 7.7; 1 9.49 11.1 134 14.9 
1 .412 .554 J31 1.15 1.61 2.67 443 C.63 9.24 11.1 12.9 15.1 10.7 

• .676 .872 1.24 1.64 240 3.45 543 7.94 10.8 12.6 14.4 10.8 18.5 
T .989 1.24 1.C9 2.17 243 445 645 9.0 i 12.0 14 1 10.0 194 204 
t 1.34 1.65 2.19 2.73 3.49 5.07 744 10.2 13.4 15.5 17.5 20.1 22.0 
9 1.73 2.09 2.70 3.33 4.17 6.90 944 11.4 14.7 1C.9 19.0 21.7 23.6 

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 184 20.5 23.2 25.2 

11 2.60 3.05 3.93 4.57 5.58 748 104 13.7 17.3 19.7 21.9 24.7 |    204 
12 3.07 3.57 4.40 6.23 640 9.44 11.3 144 18.5 21.0 234 20.2 284 
13 3.57 4.11 5.01 349 7.04 9.30 12.3 16.0 194 22.« 24.7 ?7.7 1    298 
14 4.07 4.66 • 5.03 6.57 7.79 104 134 17.1 21.1 23.7 20.1 2'J.I 31.3 
15 4.C0 5.23 646 7.26 8.55 11.0 14.3 184 224 25.0 27.5 30.6 32.8 

16 5.14 5.91 6.91 7.96 9.31 11.9 154 19.4 23.5 264 |    284 32.0 34 3 
17 5 70 6.41 7.56 9.67 10.1 12.9 164 20.5 24.8 27.0 30.2 33.4 35.7 
19 0.26 7.01 923 949 10.9 13.7 174 21.6 20.0 28.V 314 34.8 37.2 
19 6.94 7.63 8.91 10.1 11.7 14.6 194 22.7 27.2 .    301 32.9 30 2 39.6 
m 7.43 8.26 949 10.9 12.4 154 19.3 234 28.4 |    31.4 ■    34.2 37.6 40.0 

21 8 03 8.90 10.3 11.6 134 164 204 24.9 29.6 1    32.7 354 38.9 41.4 
22 EM 9.54 11.0 124 14.0 17.2 21.3 26.0 30.8 33.9 304 404 42.8 
23 9.26 |    10.3 11.7 13.1 I    144 19.1 |    224 27.1 32.0 352 38.1 41.6 44.2 a 9J9 109 12.4 13.9 15.7 19.0 23 3 28.2 33.2 1    36.4 1    3'J.4 43.0 4.V0 

|    10.5 114 131 14.6 1    10.5 19.0 24 3 1    294 34.4 :    37.7 40.0 443 40.9 

29 11.2 12.2 1   194 13.4 1    174 i    20.9 1    254 30.4 35.6 38.9 41.9 45.8 494 
2? 11.8 12.9 14.6 16.2 18.1 21.7 204 314 30.7 40.1 43.2 47.0 49.6 
n 12.3 13.6 164 16.9 18.9 22.7 274 32.6 37.9 41.3 444 494 51.0 
29 13.1 

13.9 
144 16.0 17.7 194 23.0 294 33.7 39.1 1    42.0 43.7 49.6 1    524 

30 15.0 164 194 24X0 244 294 344 404 434 47.0 50.9 I    53.7 

o 
00 
I 
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2 
Dividing both sides by a  and rewriting the last term yields 

L(X. - u.)2  £(X. - X)2   -    2 

—s s—+ <^> 
a a      c//n 

2 
By part (a), the left member has a x (Q) distribution. The second term on 

2 
the right has a x (D distribution since it is the square of a standard 

normal random variable.  This suggests (but does not prove) that the first 

2 
term on the right has a x (n~l) distribution. As for the independence of 

E(X - X)  and X, this is plausible since X - X and X are independent 

for each i.  The reason is that X - X and X can be shown to have a bi- 

variate normal distribution.  Hence, to check their independence it suffices 

to show they are uncorrelated: 

Cov(X± - X, X) - CovCX^X) - Var(X) - Covtt^Ex./n) - <y/n 

- (l/n)Cov(X1,X1) - a
2/n - a2/n - cr2/n - 0. 

For a rigorous proof of this theorem, see H. Crame*r, Mathematical Methods of 

Statistics, Princeton University Press, Princeton, N. J., 1946, Chapter 29. 

2 
Example.  Suppose you have a random sample of size 30 from a N(^,cr ) 

2 
distribution.  If a - 10, what is the probability that the sample variance 

S2 - E(X± - X)
2/30 will exceed 15? 

Solution:  P(S2 > 15) - ?{Z(X±  - X)2 > (15)(30)} - P(X(Xt - X)
2/10 > 45}. 

From Table 1, we see that 45 is between the 95th and 97.5th percentage points 

(42.6 and 45.7) of a chi-square distribution with 29 degrees of freedom. 

Using linear interpolation, P(S2 > 15) - 1 - 0.97 - 0.03. 

2 
Exercise.  1. (a)  Given a random sample of size 30 from a N(u,,a ) 

2   2    2 
distribution, find values c and d such that P(ccr < S < da ) - 0.95. 

(Ans. 0.53, 1.52.) Note that it follows from this that P(S2/d < a2 <  S2/c) - 0.95. 

2 
That is, the unknown parameter value a      lies between the random endpoints of 
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the interval  (S2/d, S2/c) with probability 0.95. 

(b) Using the fact that S(X1 - X)
2
/Q

2
 ~ x^0"1) > 8how that 

Var(S2) - 2(n-l)a4/n2. 

2 2 
2. Show that if U and V are independent with Ü ~x (n) and v ~X (■)» then 

U+V - x
2(Il+ln)-  *t follows that if X^ X2,...,Xm and Y^ Y2> ... ,YQ are 

independent random samples from two normal distributions that have the same 

2 
variance a » then 

[Z(X1 - X)
2 + £(Y - Y)2]/a2 ~ x2(n+m-2). 
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SECTION IX - PARAMETER ESTIMATION 

In many statistical applications, the experimental data consist of 

observations x ,x ,... ,x  which, according to some mathematical model, 

can be regarded as values of random variables X-,X2,...,X  having a 

joint distribution which depends on a vector of unknown parameters 

tt ■ (ü1,ö?»•••fB.).  Quite often the purpose of the experiment is to use 

the observations to estimate the values of one or more of the parameters 

Ö.  or perhaps some function of the parameters g(ö).  At this stage, we 

shall not question the appropriateness of the mathematical model, 

but the student should be aware of the fact that the goodness of certain 

estimators to be considered below depends critically on the assumption 

that the joint distribution of the observations XlfX2>...,X  is correctly 

specified.  Although there are many statistical techniques for testing 

the appropriateness of statistical models, a comprehensive discussion of 

model-building and methods for assessing appropriateness of models is 

beyond the scope of this course. 

To simplify notation below, let X    denote the vector of observa- 

tions  (X.,X0,...,X ), and let xW - (x.,x0,...,x )  denote the value 
l z     n i z     n 

of X    for a particular experimental outcome.  We recall that an 

estimator 6 ■ 6(X  )  is some function of the observations used to 

estimate a parameter.  It is implicit in this definition that  6  is a 

random variable that depends only on the observations X  and the values 

of known constants.  This is meant to exclude those functions of the 

observations that depend on the unknown parameters themselves.  The value 

6(x  )  of an estimator for a particular experimental outcome is called 

an estimate of the parameter. 
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2 
Far example, suppose that X.,X2,...yX  are i.i.d., each N(u.,a). 

2 
where ^ and Q  are both unknown.  Here, the vector of parameters 

specifying the distribution of X    is 8 - (u.,a ), and the joint 

density of the observations is 2  2 

n        -(x±-V*) /2(T . 
f(xU;; u,cr) - n —Z- e 

i-1 v^f a 

2 
Examples of parameters of interest in this case are (a)  u,, (b)  a » (c)  at 

(d) u. + 1.28a, the 90th percentile of the distribution, and 

(e) P(X < c) - $(—-**), the proportion of the population having x-values 
a 

below c.  Some estimators of u, are: 

(1) X, the sample mean, 

(2) X-, the first observation only, 

(3) [X/ix + X/ x]/2, the average of the smallest and largest values 

in the sample, 

(4) mdn(X  ), the sample median, 

(5) [x/k\ 
+ xc _ir+n^2» wnere k is some integer between 1 and n/2, 

(6) [X/0N-»-X/0v+.. .+X, ,N]/(n-2>, the average of the observations that 
\*)     \3) v.n-1; 

remain after "trimming" the smallest and largest observations in the sample, 

(7) 6 , the estimator which ignores the observations and estimates 

u. to be equal to some preassigned constant  c, 

(8) pc + (l-p)X where p is some value between 0 and 1, 

(9) max(X,0), the estimator which estimates u. using x if 

x >0 but estimates u. to be equal to 0  if x £ 0. 

Clearly, in any particular instance, there are infinitely many 

estimators that can be proposed, and the values of these estimators will 

have wildly different values for the same experimental outcome.  To 

narrow down the class of estimators that might be considered in a 
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partlcular Instance, one can impose various criteria that sees reason- 

able under the circumstances, and then eliminate those estimators that 

perform poorly according to the standards that are adopted.  The dif- 

ficulty in providing a general theory of estimation is that the goodness 

criteria can vary widely from application to application.  It is not 

hard to conceive of applications in which each of the nine estimators 

listed above for u. would be best under certain circumstances.  Thus, 

for example,  X.  would be "better" than X if the value of X-  is 

available now, but it would cost $1000 to get each additional observa- 

tion, and the increased precision is not worth the added cost.  If the 

problem of estimating u. is repeated several or even hundreds of times 

a day, then perhaps computation time or the difficulty of doing calcula- 

tions by hand would be factors to be considered.  In many applications 

one needs to worry about the possibility of large recording errors or highly 

unusual observations in the data, in which case one of the estimators 

(4)-(6) above might be chosen.  Also, there may be considerable evidence 

from previous experiments (or from experiments taking place concurrently) 

that ought to be considered in the estimation process. 

The presentation that follows will be restricted primarily to con- 

sidering properties of estimators that are commonly used and are of relevance 

in a wide number of applications.  As we shall see below, the imposition 

of certain goodness criteria leads to unique "best" estimators of many 

of the parameters of the distributions introduced in the previous sections. 

Although the sense in which these estimators are best is narrowly defined 

and does not include such factors as ease of computation and cost of 

sampling, these estimators have been widely adopted in practice, and 
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many of these estimators satisfy other goodness criteria that are not 

listed here. 

Definition. Let 6 ■ 6(X  ) be an estimator of a parameter g(e). 

The bias of  6  Is defined by 

B(ö) - E(6) - g(e). 
0 

If E (6) ■ g(ö)  for all values of e, 6 is said to be an unbiased 
0 

estimator of g(t)). 

The subscript  e on the expectation sign is included to remind the 

reader that the distribution, and hence the expectation»of 6 depends 

on u-  Note that unbiasedness requires that E (6) ■ g(ö)  for all 
9 

possible values of Q.  In order for this definition to be meaningful, 

the set of possible values of 8 must be specified.  In the absence of 

any explicit specification of the parameter set, ve shall assume that the 

set of possible values of e Is the "usual" parameter set for that model. 

2 
For example, in considering estimates of u, and <x In the N(u.,<j ) 

case, the "usual" parameter set is {(J*,CT): - °> < ^ < °°, 0 < a < "} • 

However, in certain applications one may want to restrict the possible 

values of j> to some subset of the line, e.g., to the nonnegative real 

numbers.  The usual parameter sets for many of the other distributions 

that will be considered in this section are given in Table 1, Section VI. 

Other things equal, we would ordinarily prefer unbiased estimators 

or, at least, those for which the bias B(e)  is small for those values 

of e that are deemed most likely.  As an indication that criteria other 

than unbiasedness are of more importance in choosing estimators, consider 

choosing between an unbiased estimator that has large variance and one 
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that Is biased but has a distribution that Is much more concentrated 

about the parameter being estimated for all values of 6*  Clearly, 

what Is needed In choosing among estimators are measures of how close 

the values of the estimators are to the parameters being estimated. 

Some simple measures that have been proposed In the past are:  (a) mean 

2 
squared error E [6 - g(e)l • (b) mean absolute error E (|ft- g(e)|)f 

Ö 6 

and (c)  P (|6 - g(e)I > c),  the probability that 6 misestimates the 
6 

parameter g(e)  by more than c units.  Each of these measures of 

closeness is an instance of E L(6,g(e)) where L is a "loss function" 
8 

that specifies the loss suffered if the estimated value is 6 and the 

parameter value is g(e).  Although this more general approach would 

seem to apply in more situations, in actual practice loss functions can 

rarely be specified precisely, and we shall not pursue this approach.  Por 

the purposes of this presentation, we shall concentrate most of our 

attention on the first of the three measures of closeness above.  It is 

the easiest to work with, since the mean squared error of an estimator 

bears a simple relationship to its bias and its variance. 

Theorem 9-1.  If  6  is an estimator of g(e) with bias B(e), 

the mean squared error of  6 satisfies 

E0[6 - g(9)]
2- Var (6) + [B(e)]2. 

Proof:  This theorem is merely a restatement of the easily verified 

fact that, for any random variable Y having mean u. and finite vari- 

2 
ance Oy . 

E(Y - c)2 - ay2 + (u. - c)2. 

The verification is left as an exercise. 
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It follows from the theorem that, If 6 Is unbiased for g(e), 

then the mean squared error of 6 is just the variance of 6« In 

many cases, there is a unique unbiased estimator of a parameter that 

has minimum variance for every possible parameter value Q. 

Definition. An unbiased estimator 6  is said to be the uniformly 

minimum variance unbiased (UMVU) estimator of a parameter g(e) if 6 

has minimum variance for all values of e«  In this case the efficiency 

of any other estimator 6 relative to 6  is defined to be the ratio 

VarQ(6*)/Vare(6). 

2 
For example, suppose X..,X_,...,X  are i.i.d., each N(u.,a). 

Of the nine estimators of u. that were listed earlier, the first six 

are all unbiased. Estimators (3)-(6) are all instances of weighted 

averages Ew^/^  of the order statistics Xm ,X/2\ »• • • **( \    *h*re 

£w. - 1 and w. - w ..,  for k ■ l,2,...,n. That is, X,,*  and X, v i k   n-k+1 (1)       (n) 

receive the same weight, X^v  and X, .*  receive the same weight, etc. 

If n - 20, the variances of the first six estimators of u, are 

(1) Var(X) - a2/20 - 0.05<j2. 

(2) VarCX^ - <?. 

(3) Var([X(1) + X(Q)]/2)- 0.143a
2. 

(A) Var(mdn(X(n))) - 0.073Q2. 

(5) Var([X(6) + *(15)l/2)- 0.061<y
2. 

(6) Var([X(2) + X(3) + ... + X(19)]/18) - 0.051<>r
2. 

(See W. J. Dixon and Frank J. Massey, Jr., Introduction to Statistical 

Analysis, Second Edition, McGraw-Hill, New York, p. 406.) Thus, among 

these unbiased estimators, X has smallest variance. 
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It will be shown later in this section that X is the UHVU esti- 

mator of u, in this case.  The efficiency of the median relative to 

X is 0.05/0.073 - 0.68.  It can be shown that for large values of n the 

2 
variance of the sample median is approximately  (n72)a /n, so that for 

large n the efficiency of the median relative to X is approximately 

2/n ■ 0.64.  The implication of this is that X achieves approximately 

the same precision as the sample median using only 64 percent as many 

observations. 

We note in passing that the "trimmed mean" estimator (6) above 

has efficiency 0.98.  This estimator is almost as efficient as X, and 

it affords some protection against gross recording errors and "wild 

shots" in the data by eliminating the largest and smallest observation 

from the calculation of the estimate. 

The other estimators (7)-(9) are biased estimators of u,, but each 

of them has smaller mean squared error than X for certain values of u>. 

The mean squared error of  6 . the estimator which estimates u. to be 

equal to c  for all values of the observations, is equal to 

2 2 
E (6 - u.)  ■ (c - u,) , which is less than the mean squared error of 

tt c 
_ 2 
X, namely a  /n, for values of u« close to c. 

The estimator 6 ■ pc + (l-p)X has bias 

E(6) - i* - pc + (l-p)u. - V* - P(c-u.), 

and it8 variance is 

Var(6) - (l-p)2Var(X) - (l-p)2or2/n. 

Therefore, by Theorem 9-1, the mean-squared error of 6 is 

EQ(6 - u.)2 - (l-p)2a2/n + P
2(c-u.)2. 

Note that this estimator has smaller variance than X, so that if the bias 

of  6  is not too large (i.e., if c is close to u.), then 6 has smaller 
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mean squared error than X. 

The biased estimator 6 ■ max(X,0) has smaller mean squared error 

than X for all positive values of u. since 

(6 - u.)2 * (X - u.)2 

for all possible sample values with strict Inequality holding whenever 

— 2—2 
X < 0.  It follows that E (6 - u.) < E (X - »)  for all positive values 

8 8 

of 

Exercises.  1.  Show that, for any random variable Y having mean 

2 2    2        2 
\M    and variance a» < °°» E(Y - c) - o^ + (u, - c) . 

2. Let X.,X2,...,X25 be i.i.d., each Bernoulli(p). Compute the 

bias, variance, and mean squared error of each of the following estimators 

of p:  (a) X,  (b)  61/2> 
the estimator having value 1/2 for all values 

of the Xi
,s>  (c) the "constant risk" estimator l ^°*-    p*ot the 

mean squared error as a function of p for each of the three estimators. 

Ans.  (a) 0, p(l-p)/25, p(l-p)/25;  (b)  (l-2p)/2, 0,  (l-2p)2/4; 

(c)  (l-2p)/12, p(l-p)/36, 1/144. 

2 
3. Let X., Xj X be i.i.d., M^.Q). Consider the estimators 

S2 - SS/n and o   - SS/(n-l) where SS - E(Xt - X)
2. 

2  2 
(a)  Show that, as estimators of a • S  has smaller mean squared error 

A2 
than the unbiased estimator a  .  0>)  Among estimators of the form 

a   - cSS, determine the value of c for which a  nas smallest mean 

squared error.  Ans.  c » l/(n+l). 



-119- 

Definition.  Suppose XlfX2,...,X  have Joint density (or proba- 

bility function)  f(x  ; 9) where Q is a vector of unknown parameters 

6 - (81,e2,...,ek).  If the observed value of X(n) - (X^ X^..,,! ) is 

x ', the function 

L(e) - f(x(n); e) 

considered as a function of e is called the likelihood function. 

If, for each possible value of X  , there is a unique value of e. 

say e(X  ), that maximizes the likelihood function, then the estimator 

e - e(X  )  determined in this way is called the maximum likelihood 

estimator (MLE)  of 9. 

In discrete cases, using the maximum likelihood estimator amounts to 

choosing 0 to maximize the probability of what was observed. As we shall 

see later, maximum likelihood estimators are usually very good estimators 

for the parameters in the models that we have discussed so far. 

For example, suppose that X., X2,...,X  are i.i.d., Bernoulli(9). 

Then 

L(e) - f(x(n); e) - n e^d-e) * - et(i-e)n"t 

where t - Ex..  We distinguish three cases: 

Ce)  t - 0.  In this case, the likelihood function is L(e) - (l-8)n, 

a strictly decreasing function of 0 on the unit Interval [0,1]  that 

achieves its maximum at 0*0. 

(b) t * n.  Here, the likelihood function is L(9) - 9°. which 

achieves its maximum at  8-1. 

(c) 0 < t < n.  In this case, the likelihood function Is 

L(e) - 8t(l-e)n"t, which is a polynomial in 6 that has value 0 at the 

end points of the unit Interval and is positive for 0 < 6 < 1. The MLE 
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6 can be determined by setting the derivative of L(e)  equal to 0 and 

solving for e.  However, it is easier to determine the maximum of the 

logarithm of L(e): 

log L(u) ■ t log e + (n-t) log(l-e). 

Since log x is an increasing function of x, the value of 0 that 

maximizes log L(e) will also maximize L(e).  Setting the derivative 

of  log L(ö)  equal to 0 yields 

e  l-e u' 

Solving for e gives e - t/n - Dc /n - x. We conclude that the MLE of 

B is 9 - X.  This estimator is unbiased and has variance ö(l-ö)/n. 

It will be shown later that X is the UMVU estimator of e* 

When the joint density or probability function f(x  ; 9) has 

several unknown parameters, one can usually find the MLE's of the parameters 

by setting the partial derivatives of log L(e) with respect to the 

parameters  Q.  equal to zero and solving the resulting equations. 

2 
For example, if X.,X2,...,X  are i.i.d., each N(^,a )» then 

n        -(x ->)2/2o2 
L(u..a) - n -^L- e  f       - (/2^ a)^1 exp[-L(x - n)2/2cr ). 

1-1 ^ a * 

Since E^-Vk)2 - E^-x)2 - nCx-^)2, 

E(x -x)2   ,- v2 
log L(vk,a) - -n log /2^ - n log a 5 n * 9  - 

2a      2a 

Here we could set the partial derivatives of log L(^,a) with respect 

to u. and a   equal to zero and solve the resulting two equations for 

u, and a.  However, we observe that u> only occurs in the last term 

on the right, and this term is maximized by setting u- - x.  Thus the 

problem reduces to choosing a    to minimize the sum of the other terms. 
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2 
Setting ölog L(u.,or)/Oa - 0 and solving for a     yields 

2 — 2 
a   - E(x1 - x) /n. 

Thus, the MLE's of u. and a   are X and S - [E(X1 - X)
2/n]1/2.  The 

MLE of functions of u, and a   are the corresponding functions of X 

2       2 
and S.  For example, the MLE of a  is S , and the MLE of u. + 1.28a 

— 2 9 
is X + 1.28S.  As we saw earlier,  S  is a biased estimator of  Q, 

but it has smaller mean squared error than the usual unbiased estimator 

"2 — 2 
O    ■ ECXj^ - X) /(n-1).  The MLE of o    is also a biased estimator. 

An unbiased estimator of a    can be obtained by taking a - c o where 

a is the square root of a      and 

c 
n 

[(n-l)/2]1/2r[(n-l)/2]/f(n/2). 

The values of c  for n £ 10 are 
n 

n 

c n 

10 

1.253 1.128  1.085  1.064  1.051 1.042  1.036  1.032  1.028 

For n > 5,  c  is well approximated by 1 + 1/4(n-1).  Another way of 
n 

  *\ -I /n 

representing this unbiased estimator is in the form a ■ [£(X. - X) /k ]   , 

where k - 2{r(n/2)/r[(n-l)/2]}2.  The values of k  for n £ 10 are: 
n n 

n 2 3 4 5             6 7 8             9 10 

k n 0.637 1.571 2.546 3.534    4.527 5.522 6.519     7.517 8.515 

For n > 10,  k  is approximately equal to n - 3/2.  (See John Gurland 

and Ram C. Tripathi, "A Simple Approximation for Unbiased Estimation of 

the Standard Deviation," The American Statistician, October 1971, pp. 30-32.) 

Example.  Suppose X.., X2,...,X  are i.i.d., each uniformly dis- 

tributed on  (0,6). so that the density of each of the X 's can be speci- 

fied as f(x ;e) - I/o  for 0 < x±  £ 6- 
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Here, the likelihood function is 

L(e) - 
0     if x. < 0  or x±  > e for some it 

I/o11   If 0 < xt £ e for i - l,2,...,n. 

Since L(e) is a decreasing function of e for 8 * x, * - maxCx^ ... ,xft) 

and L(e) is zero for 8 < x, *, it follows that L(e)  1« maximized by 

6 - x    and the MLE of 8 is 8 - X, v. By Exercise 1 below, 8 is a 
\ti) in/ 

biased estimator of e with expectation E(e) - ne/(n+D and 

Var(e) - ne2/(n+l)2(n+2). 

Next consider estimating ^ - e/2, the mean of the X^a. The MLE of 

V* is jl - 8/2, which is again a biased estimator. The corresponding un- 

biased estimator of u. that depends on X.*  is £ - (n+l)§/2n, which 

has variance 

VarQ - (n+l)2Var(e)/4n2 - B2/4n(n+2). 

How does this compare with the sample mean X? Since each X. has variance 

82/12, Var(X) - e2/12n. Hence, the efficiency of X relative to £ la 

VarQ/VarOD - 3/(n+2). Note how poorly X performs relative to £ in 

this case. For example, if n - 28, the variance of Z   i8 only one tenth 

as large as the variance of X. 

Exercises.  1. Let Y - X, . where X., X0,...,X_ are l.l.d., each 
  in) l i n 

Uniform«), e). Show that (a) the density of Y la f(y) - nyll*'1/en for 

0 < y < 6, (b) E(Y) - ne/(n+l), and <c) Var(Y) - ne2/(n+l)2(n+2). 

2. Show that, if X , X2,...,X  are l.l.d., each having a negative 

exponential distribution with parameter X» then the MLE of X la X - 1/X. 

3. Assume that Y-,Y,,...,Y  are independent random variables, and 
l L n 

Y± -N(axjL,a
2) where a, JLV x2,...,xn are known constsnta. Show that 

(a) the MLE of a    la i - SX^j/E*! » <b> « la an unbiased estimator of 

2   2 
or with variance Q  /EX. . 

4. Show that, if X ,X.,...,X  are l.l.d., each Poisson (X)» then 

the MLE of X Is X - X. 
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The reader should note that no optlmallty properties for maximum like- 

lihood estimators were stated In the previous section.  There Is a good 

reason for this omission—namely, the fact that some MLE's are poor esti- 

mators.  Sometimes It Is asserted that MLE's are good estimators because 

they have desirable "asymptotic" properties. To see that the reasoning be- 

hind this assertion Is shaky, let us first define our terms. 

Definition.  Suppose the vector of observations XW  has Joint density 

or probability function f(x '; e) , and let y    - y(X      )  be an estimator 

(or, more precisely, a sequence of estimators) of a parameter y  - g(6)• 

The sequence y      is said to be 

(a) consistent if y    tends to y    in probability [i.e., for any t > 0, 

P
QUY " YI ^ •)  tends to 0 as n becomes infinite]; 

2 
(b) asymptotically normal with mean y    and variance a /n if the 

distribution of t/n(y - v)/cr tends to a standard normal distribution, 
A 

(c) best asymptotically normal (BAN) if y      is asymptotically normal 

2 ~ 
with mean y    and variance a /n and, if y      is any other asymptotically 

2 2   2 
normal sequence with mean y    and variance T /n, then a   £ T • 

* "22 
Since P (|-y - y| k t) £ E (y    - y)   It    by Theorem 5-6, and 

o  n o n 

Ee<Vn - V)
2 ■ Vare(Yn) + Bn2(e) 

where B (e)  is the bias of y   , to prove consistency it suffices to show 
A A 

that Var(v )-K) and E(v )-*y    for all values of 0.  Thus for example, 
'n 'n 

2       — 
if X-, X2,...,X  are i.i.d., each N(u,,a). then X is a consistent, 

asymptotically normal estimator of u,, but so are the following ridiculous 

estimators: 



-124- 

(a) the average of X  and every thousandth observation thereafter, 

17 if n < 1010 (b) £ 
X if n k 1010 , 

(c) jfc* - (nX + 1010)/(n+l). 

The point of these examples is that consistency says nothing about the 

goodness of an estimator for small samples or even for very large ones. 

Conversely, inconsistent estimators may still be good in small samples. 

As a frivolous example in the normal case above, consider 

X  if n < 1010 

0  if n * 1010 . 

The reason for citing asymptotic properties of estimators is that 

in many cases it is difficult to determine the properties of estimators in 

small samples, but methods exist for determining their asymptotic distribu- 

tions.  A second reason is based on the wishful thinking that those estimators 

that have desirable asymptotic properties will also prove to be good in small 

samples. 

For what it is worth, if X., X?,...,X  are l.i.d., each having 

density or probability function f(x.; 8). and if Q is the MLE of e, 

then e  is a consistent, BAN estimator of  8 provided that  f(x.; e) 

satisfies certain regularity conditions.  On the other hand, examples exist 

2 
to show that MLE's need not be consistent. 

Since the method of maximum likelihood sometimes leads to poor esti- 

mators, the reader may wonder why we have devoted so much space to this 

topic.  The reason is that there is no single method for deriving good 

For a comprehensive discussion of maximum likelihood estimation, 
see M. G. Kendall, and Alan Stuart, The Advanced Theory of Statistics, 
Vol. 2, Hafner Publishing Company, New York, 1961, Chapter 18. 

2 
See Kendall and Stuart, ibid., p. 61. Also, R. R. Bahadur, "Examples 

of Inconsistency of Maximum Likelihood Estimates," Sankhya, December 1958, 
pp. 207-210. 
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estimators, and the maximum likelihood estimators provide a reasonable 

starting point. Another reason is that, if T - (8-, Bof*»^) where 

6  is the MLE of 0 > then it often happens that, if g(e)  is a parameter 

for which a UMVU estimator 6  exists, then 6  is usually either 

g(T)  or some multiple of g(T).  Moreover, T is usually a "sufficient" 

statistic for ö. 

Definition.  Let X    have joint density or probability function 

f(x^; e).  A statistic T is said to be sufficient for e - (e^^»• • • .6.) 

if the conditional distribution of X  , given T - t, does not depend on 

e. 

The importance of a sufficient statistic, which may be a single random 

variable or a vector of random variables T - (T. , T0,...,T ), is that it 1   z     m 

summarizes all the information about  ö  that is contained in the sample 

values.  Since the conditional distribution of X  , given T ■ t, does 

not depend on ö, it follows that the conditional distribution of any other 

statistic U - u(X  )  does not depend on B either.  Since the conditional 

distribution of U is the same for all 6» knowing the value of U cannot 

provide any additional information about the value of  a 

Example.  Let X., X2>...,X  be i.i.d., Bernoulli(e).  To see that 

T - I2C.  is sufficient for e, consider 

P(X(n) - x(n)|T - t) - P (X(n) - x(n), T - t)/P(T - t). 
8 B 6 

The numerator on the right is zero unless t ■ £x , in which case 

Pe(x
(n) - x(n), T - t) - e^d - e)n_0tl - e'd-e)""'. 

Since  p (T - t) - Q e U-e)" \ 

t \ i \ f °     if t ^ Ex. 
8 (l/(£)  if t - Btj. 
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The expression on the right is free of u, completing the proof that T is 

sufficient for y. 

In general, it is hard to establish sufficiency directly from the 

definition as was done in this case.  Fortunately, the following theorem 

enables us to spot sufficient statistics easily from the Joint density or 

probability function of X(n). 

Theorem 9-2.  (Fisher-Neyman Factorization Theorem.) A statistic 

T = t(X(n') is a sufficient statistic for 8 if and only if the Joint 

density or probability function of X    can be factored into two parts 

f(x(n); e) - g(t,e) h(x(n)), 

where g(t,e)  depends only on t - t(x  )  and the parameter(s) e» and 

h(x  )  does not depend on 8. 

Example.  In the Bernoulli case above, 
(  x       Dc.    n-£x 

f(xu;
; e) - e ^l-e)  l. 

Here, we can apply the Factorization Theorem by setting h(x  ) ■ 1 and 

g(t,e) - et(l-9)n"t where t - Ex±.     It follows that T - XX±    to a 

sufficient statistic for e* 

2 
Example.  Let X , X_,...,X  be i.i.d., each N(u.,cr )  where both 

2 
u, and a  are unknown.  Then 

(n) r—  -n ~E(xi">) /2c7 
(x  ; v*,a) ■ (*2n a)  e 

2       — 2   —  2 
Since E(x -^) - E(x -x) + n(x-^) , it follows from the Factorization Theorem 

by setting h(x(n)) - 1 that T - (X, Ett^X)2)  is a (set of) sufficient 

2 
statistic(s).  If a      is known, then using the factorization 

we see that X is sufficient for u..  If u is known, then it follows from 

2 2 
the first representation above that E(X -JA)  is sufficient for a  . 
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Note that it follows from the Factorization Theorem that, if T is 

sufficient for 8, and U ■ u(T)  is some one-to-one function of T, then 

U is also sufficient for e.  For example, in the Bernoulli case above, 

knowing that T ■ EX.  is sufficient for e implies that X is also 

_  2   —  2 2 
sufficient for e.  In the normal case, (X, S ), (X, a  ), and  (EX., EX. ) 

are all sufficient statistics for ^ and <j. 

Theorem 9-3.  (Rao-Blackwell Theorem.)  Let T be a sufficient 

statistic for  Q, and let  6 be any unbiased estimator of g(e).  Then 

6 = E(6|T)  is also an unbiased estimator of g(e)  and Var (6 ) £ Var (6) 
8 6 

with strict inequality holding unless 6 is a function of T.  If 6 is 

a biased estimator of  g(0), then 6  has the same bias as  6  for all 

values of 8, and Var(6 ) £ Var(6), implying that the mean squared error 

of 6  is at least as small as that for 6 for all 8. 

Proof:  6 - E($|T)  is a function of T alone (and does not depend on 8) 

since, given T ■ t, the conditional distribution of  6 - 6(X>)     is 

independent of  8.  Hence, the conditional expectation of  6, given T, is 

independent of 8-  The estimator  6  has the same bias as  6, because 

6  and 6 have the same expectation for all values of 8 by Theorem 7-6(a)? 

M**> " EQ(E(6|T)) - E (6). 
üb ü 

The fact that Var(6 ) £ Var(6)  follows from Exercise 4(b), page 92: 

Var (6) - EQ[Var(6|T)] + Var [E(6|T)J, 
8       8 8 

and the fact that Var(6 T) * 0. Note that Var (t  ) < Var (6)  unless 
8        8 

Var(6|T) - 0, which would imply that  6  is a function of T. 

An implication of the theorem is that any estimator that is not a 

function of a sufficient statistic can always be improved upon by an estimator 

that is a function of a sufficient statistic.  For example, suppose X,, Xof...,X i  /     n 

are i.i.d., each having a uniform distribution on  (0,8).  By writing the 
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joint density of the observations in the form 

f(x(n); e) - (l/e11) Kx(n) * e) 

where I(x, N £ e)  is 1 if x, v £ e and 0 otherwise, we see from 

the Factorization Theorem that T - X, N  is a sufficient statistic for e. 
(n) 

Consider estimating u. - ö/2, the mean of the X 's.  Two unbiased esti- 

mators of u. are X-  and X, neither of which are functions of the suf- 

ficient statistic.  It follows that E(X.|T)  and E(X|T)  are unbiased 

estimators of u. having smaller variance than either X_  and X.  It 

turns out that ECX-JT) - E(X|T) - £, where £- (n+l)T/2n.  This is the 

same estimator of u- that was derived on page 122. 

The Rao-Blackwell Theorem would seem to provide a useful tool for 

improving upon estimators. However, the tool is rarely used since, in 

the commonly used statistical models in which the density or probability 

function f(x  ; e)  is known except for the parameter values 

8 - (ei»02>-••»6k)t 
the "standard" estimators are either MLE's or functions 

of the MLE's, and it follows easily from the Factorization Theorem that, 

if T is sufficient for e, then the MLE 6 of g(e)  ia a function of 

T, say  6(T).  Since E(6(T)| T) - 6(T)  by Theorem 7-6(b), MLE's are 

unaffected by conditioning on a sufficient statistic. 

Although it is not true in general, it often happens that if 

T - (Uj, e2»--*»Bk) where e  is the MLE of e^ then T is a "minimal" 

sufficient statistic for u, i.e., all other sufficient statistics are 

functions of T. Moreover, it often happens that the unbiased estimator 

of a parameter g(e)  that depends on T is unique in the sense that if 

61(T)  and 62(T)  are two unbiased estimators of g(e), then ^(T) - 62(T) 

except perhaps on a subset of the sample space that has probability zero 

for all values of y. Under these circumstances, it then follows from the 
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* 
Rao-Blackwell Theorem that, if one can find a single estimator 6 

that is a function of T, then 6  is the UMVU estimator of g(e).  Any 

other unbiased estimator 6 can be improved upon by E(ö|T), but this is 

* 
an unbiased estimator that depends on T, and by assumption 6  is the 

unique unbiased estimator that is a function of T. 

We shall now define a property of sufficient statistics T that 

assures uniqueness of unbiased estimators that are functions of T. 

Definition.  A statistic T is said to be complete if the only real- 

valued functions h(T)  satisfying E [h(T)] - 0 for all values of e 
9 

are those for which P (h(T) - 0} - 1 for all 9- 
9 

To see that unbiased estimators that depend on a complete, sufficient 

statistic are unique in the sense specified above, suppose 6j(T) and 62(
T) 

are two unbiased estimators of the same parameter g(ö) .  Then 

E
QU, (T) - 69(T)] « 0  for all values of 6-  By the definition of completeness, 

it follows that  ÖJCT) - 62(T)  except perhaps on a set probability zero. 

Theorem 9-4.  ( Lehmann-S ehe ffe* Theorem.)  Suppose T is a complete, 

sufficient statistic for e, and g(e)  has at least one unbiased esti- 

mator.  Then g(8)  has a unique UMVU estimator that depends on T. 

Proof:  Let 6 be any unbiased estimator of g(©).  Then, by the 

Rao-Blackwell Theorem,  6 ■ E(6JT)  is again unbiased for g(8)» and 

Var(6 ) £ Var(6) with equality holding if and only if 6  is a function 

of T.  Since T is complete, 6  is the unique unbiased estimator of 

g(ö)  depending on T. 

Many of the statistical models that we have considered have complete, 

sufficient statistics T that can be determined by setting T - (9^,92» ••• .9.) 

where 9  is the MLE of Q..    The sufficiency of the statistics T in 
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the examples below can be verified by the Factorization Theorem.  The 

proofs of the completeness of many of these statistics are special cases 

of a theorem that can be found in E. L. Lehmann, Testing Statistical 

Hypotheses, John Wiley & Sons, New York, p. 132. 

Bernoulli.  If X,, X. X  are i.i.d., Bernoulli(e), then X 
       i l n 

is complete and sufficient for 6»  Since X is unbiased for e, it is 

the UMVU estimator of 8-  Let g(e) - e(l-e)/n, which is the variance 

of X.  Since X(l - X)/(n-l) is an unbiased estimator of g(e)  that 

depends on X, it follows that X(l - X)/(n-l)  is the UMVU estimator 

of g(e). 

Poisson.  If X,, X0,...,X  are i.i.d., Poisson(X), then the MLE        l  i n 

of X is X, which is a complete and sufficient statistic.  Since X is 

unbiased for X, it is the UMVU estimator of X« 

Geometric.  If X-, X2,...,X  are i.i.d., each Geometric(p), then 

the MLE of p is 1/X. This is a biased estimator, but it is complete 

and sufficient for p. The UMVU estimator of p is (n-l)/(U. - 1) if 

n > 1.  If n - 1, the UMVU estimator of p has value 1 if X. - 1 and 

0 if X, > 1.  (In this case, the UMVU estimator is absurd.) 

2 
Normal.  Suppose X-, X2,...,X  are i.i.d., each N(|»,a ) • 

2 «_ 
(a) If both u. and a     are unknown, the MLE of 9 " (u»<r) !■ T ■ (X, S), 

which is complete and sufficient for g.  Let |i - X,or ■ E(X -X) /(n-1), 

and a " c a where c  is defined on page 121.  Since these are un- 

biased estimators that are functions of the complete, sufficient statistic 

2 
T, they are the UMVU estimators of u., a » and a* 

2 — 
(b) If a  is known, X is complete and sufficient for u«. Hence, 

X is the UMVU estimator of i». 

(c) If u. is known, the MLE of (j2    is a   - ZCX^) /n, which is 
ä
2 

complete and sufficient.  Since a      is unbiased, it is the UMVU estimator 

-  2 
of a • 
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Two-sample Normal.  Suppose X-, X2,...,X , Y-, Y2,...,Y  are Inde- 

pendent,  Xt ~ N(5,a
2),  Y ~ N(1|,T2). 

—   2 —   2 (a) If all parameters are unknown, the MLE's  (X, S  , Y, S )  are 

2     2 
complete and sufficient for ü - (§, a , T\,  T ).  Hence, the UMVU estimators 

2      2    A?      2            
of §, a , 11, T , and § - 1\    are X, a , Y, T , and X - Y. 

2   2 2 
(b) If T * a      (by assumption) and £, T), and <j      are all unknown, 

then the MLE's X, Y, and  S2 - [ECX^X)2 4- E(Y -Y)2]/(m+n)  are complete 

— — 2 
and sufficient.  It follows that X, Y,  and  (m+n)S /(n+m-2)  are the 

2 
UMVU estimators of §, f\t  and a . 

Bivariate Normal.  Let  (X^Y,), (X0 ,Y0) ,. .. , (X ,Y )  be a random          11    11 n n 

sample from a bivariate normal distribution with parameters 

2   2 
**X' **Y* °X • °Y *  anc* P'  T^ie MLE'8 of these parameters are 

(X, Y, Sx
2, Sy

2, r) where  Sx
2 - EÖL-X) /n and r is the sample cor- 

relation coefficient.  Since these statistics are complete and sufficient, 
      2       2 

the unbiased estimators X, Y, a, , and o^  are the UMVU estimators of 

2       2 
**X' **Y' °X ' an^ °Y '  Ifc can be snown that r is a biased estimator of 

2 
p with mean approximately equal to p[1 — (1-p )/2n]. Although the UMVU 

estimator exists  [see I. Olkln and J. W. Pratt, "Unbiased estimation of 

Certain Correlation Coefficients" Annals of Mathematical Statistics, Vol. 29 

(1958), p. 201], it is a complicated function of  r.  Olkin and Pratt 
2 

recommend using the approximation r[l - (1-r )/2(n-4)]. 

Exercisje.  It can be shown that, if X., X2,...,X  are i.i.d., each 

Negative Exponential(X)» the MLE of X is complete and sufficient.  Determine 

2 
the UMVU estimators of 1/X and 1/X , the mean and variance of the X's. 

Ans.  X, nX2/(n+l). 
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Assume that Y., Y0,...,Y  are independent random variables such 
l  i n 

2 
that E(Y ) - 1)  and Var(Y ) - a  < °°. Let 6 be some parameter such 

that e = £cjTL  f°r some choice of constants c.. Then e has at 

least one unbiased "linear" estimator—namely, ECJYJ« 

Definition. Given the situation above, we say that 8 is the best 

linear unbiased estimator (BLUE) of 6 If 8 is a linear function of 

the Y 's  (i.e., 8 ■ Ea.Y.) and 8 has minimum variance among all un- 

biased linear estimators of 6. 

The expectation and variance of any linear estimator 8 " TAX.    are 

2 2 
given by E(e) * I^.Tl.  and Var(e) ■ Z*±  a. • Note that these character- 

istics of 8 depend only on the means and variances of the v^'s» but 

no further assumptions about the distributions of the Y 's are needed. 

Thus, one can determine BLUE's without specifying the exact distributions 

of the observations Y.. 

For example, suppose Y., Y«,...,Y  have a common mean 8 but possibly 

2 
different variances a.   ,  and one wants to find the BLUE of 8*  This 

situation applies if the Y , Y„,...,Y  are a random sample from any 

distribution having finite variance, in which case the Y *s have a common 

2 
mean 8 and a common variance a  • More generally, it applies in any 

situation where Y , Y?,...,Y  are independent unbiased estimators of the 

same parameter 8.  For example, Y  may be the average of n.  i.l.d. 

2 
random variables having mean 8 and variance a  » In which case 

E(Yi) « 8 and Var^) - o2/n±- 

Theorem 9-5 .  If Y_, Y0,...,Y  are independent with E(Y<) - 8 and 
       l  z     n 1 
2 

Var(Yt) - a  < °°, the BLUE of 8 based on the Y^s is 8 - E*^ where 

the weights w  satisfy Ew. - 1 and are inversely proportional to the 
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2 2 
variances o      (i.e., w1 - y±^y±    where y    - 1/a. ).  In particular, 

if the Y 's have the same variance, the BLUE of 6 is 6 ■ Y. 

Proof:  Let *§ - E^Y.  De anv unbiased estimator of 6*  Since 

ECe*) ■ La.Q and VardT) - La. ON » the unbiasedness condition implies 

that La ■ 1, and the problem reduces to finding a vector of constants 

2 2 
a - (a ,a2,...,a )  to minimize f(a) - La a±      subject to the condi- 

tion that La. - 1.  In minimizing f(a)  on the set A - {a: La. - 1}, 

one can just as well consider minimizing 

g(a) - Ea^2 + X (Lat - 1) 

where \    is any constant,since the functions  f and g are equal on A. 

The trick, called the "method of Lagrange multipliers," is to use differ- 

entiation to find the value a  that minimizes  g(a)  over all values of 

n * 
a in R .  In general, the components of a  will depend on X» but one 

* 
can determine a value of X for which a  is in A.  Since this value of 

* n * * 
a  minimizes g over R  and since a  is in A,  a  also minimizes 

f over A.  Here, 

ff^-« 2a1a1
2 + X    for i-l,2,...,n, 

*at 

n 
and it follows that g(a)  is minimized over R  by a  - -\y 12 

2 * 
where y    ■ l/<y .  In order to have La  - 1, we choose X ■ -2/Ly. , 

* 
in which case a.  - y./Ly.. 

Now suppose that Y1, Y~»•••,Y  are independent random variables 

2 
with means E(Y.) - of + ßx.  and Var(Y.) - a     where x. , x0,...,x 

i l l l  l n 

are known constants such that not all of them are equal, and the 

"regression coefficients" or and ß are parameters to be estimated 
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from the observations.  In the absence of specific assumptions about the 

exact distributions of the Y's, we search for the BLUE's of a   and ß. 

Let us assume for the moment that the v
1's have normal distribu- 

2 
tions, i.e., Y ~ N(a+ßx , a ). Led by the hope that the MLE'a of a 

and ß will turn out to be linear, consider the likelihood function in 

this case: 2  2 2 
n / i  \ -(y,-a-ßxJ /2a   / ,  \n  -SS/2a w    2,   "    1  \  VJi  y  i L(o/,ß,CT ) - n 
1-1 \ /2r7 a / \/2^ < 

where 

SS - Ln
±ml  (yt - c* - ßx^2. 

Note that the values a and b of a    and ß that maximize the likeli- 

hood function are the values of a and b that minimize the sum of squares 

SS.  Hence, the MLE's a and b are called the least-squares estimators 

in this case. The partial derivatives of SS with respect to or and ß 

are: 

tf" -2Dti(yi"a ~ pxi) 
Setting these partial derivatives equal to zero and solving for or and ß 

yields the MLE's 

b - L(xi-x)Y1/Z(x1-x')2 

a - Y - bx. 

Note that a and b are both linear estimators of or and ß. Axe they 

unbiased? To verify that b is unbiased, we compute 

E(x1-x) (opfßx1)  o£(xi-x)  ßL(x1-i")x1 
E(b) - 

E(x±-x)
2     EU^x)2   LCX^X)2 
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The first term on the right is zero because £(x -x) - 0; the second term 

—       2—2 
reduces to ß because £(x -x)x - Ex.  - nx , which is another way of 

writing the denominator.  Hence,  E(b) - ß.  The estimator a is also 

unbiased, because 

E(a) * E(Y) - E(b)x - E(or+ßx )/n - ßx - ct. 

2 *2 
Incidentally, the MLE of a  in this case is o   " SS /n where 

SSe - L(Y1 - a - bXl)
2. 

~2 2 ~2 
Although a  is a biased estimator of a > the estimator a  obtained by 

dividing the "residual sum of squares"  SS  by n-2  can be shown to be 

unbiased.  It also turns out that SS  is Independent of a and b, and 

2 
SS /o      has a chi-square distribution with n-2 degrees of freedom. 

~2 
The clincher in this example is that a, b, and a      can be shown to 

2 
be complete and sufficient statistics for the parameters of, ß, and a • 

~2 
It follows that a, b, and a      are the UMVU unbiased estimators of the 

parameters.   , 

What is the implication of this for the original problem of finding 

the BLUE's of a  and ß?  Since the calculations of the expectations and 

variances of the linear estimators a and b do not use the normality 

assumptions, a and b are unbiased linear estimators of or and ß 

whether the Y.'s have normal distributions or not. Moreover, they must 

be the BLUE's of a    and ß, because if there were another unbiased linear 

estimator, say b , which had smaller variance than b, then b  would 

be a better unbiased estimator than b in the normal case, contradicting 

the fact that b is UMVU in the normal case.  This completes the proof 

of the following theorem: 
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Theorem 9-6.  If Y-, Y_,...,Y  are independent observations with 
       1  I n 

2 
E(Y.) ■ a + ßxJ  and VarCYj - a     where x. , x~,...,x  are given con- 

i        I i 1  I n 

stants, then the BLUE's of ce    and ß are the least squares estimators 

a - Y - bx and b » £(x -x)Y /£(x -x) . Moreover, if the observations 

Y  are normally distributed, then a and b are the UMVU estimators of 

at    and ß. 

It follows from the derivation above that, if v - c-cr + c~ß is 

any linear function of the parameters or and ß, then the BLUE of v is 

7 * c-a + c2b.  (In the normal case, y    is the UMVU estimator of y.) 

In particular, the BLUE's of the expected values E(Y.) - or + ßx  are the 

"fitted values" a + bx .  Sometimes the primary purpose of estimating a 

and  ß is to predict the expected value of a future value of Y at x ■ x~. 

The BLUE of E(Y) - a + ßxfl is a + bxQ.  Its variance is given in 

Exercise 2 below. 

Exercises.  1.  Show that, if Y , Y«,...,Y  are independent random 

2 
variables having possibly different means but the same variance a > then 

VarCEc^) « oZc*    and CovCEc^.Ed^) - c^Ec^. 

2. Use part (a) to show that, if a and b are the BLUE's in the 

theorem above, then Var(b) - a
2/SS(x),  Var(a) - a2[(l/n) + x2/SS(x)], 

Cov(a,b) - -XQ2/SS(X), and Var(a+bx0) - a
2[(l/n) + (xQ-x)

2/SS(x)] where 

SS(x) - L(xi-x)
2. 

3. The "residual" e  corresponding to Y  is defined by 

i±  - Y±  - a - bx .  Show that (a) £e± - 0,  (b) E^) - 0, and 

(c)  CovCe^a) - CovCe^b) - 0. 
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As a generalization of the "simple linear regression" model con- 

sidered above, let Y , Y„, ..., Y  be independent random variables 

with means 

E(V " Pi xli + f>2 x2i + ••■ + fJpxpl 

where  (xw» x? ,.. . , x )  are given constants and the ßj's are un- 

known parameters.  In addition, assume that the Y.'s have the same 
2 

variance or , and the columns of the matrix X below are linearly 

independent: 

X21 

x22 

X2n   — 

To see that this model includes simple linear regression as a special 

case, set x.. - 1 and x0. ■ x.  for i - l,2,...,n where x. , x~, ...,x 
11 zi   l 1  i, n 

are the values of the "independent variable." In this case the condition 

that the columns of X be linearly independent amounts to requiring that 

not all of the x 's have the same value. 

Let b , b»,..., b  denote the least-squares estimators of the 

parameters  ß. , i.e., the b 's are the values of the  ß. fs that mini- 

mize 

SS -£ (Yt - Pl xu - ß2 x2i - ... - Ppxpi)
2. 

Theorem 9-7.  (Gauss-Markov Theorem.)  Under the above assumptions 

the least squares estimators b.  are the BLUE's of the regression co- 

efficients  ß., and if v - ^JC-\$\     is any linear combination of the ß.'s, 

the BLUE of y    is y  - £cib-r 

The columns of X are said to be linearly dependent if there exist 

constants a., a«,..., a , not all of which are zero, such that E.^ ^.x 

for  i«l,2,...,n.  In this case, one of the columns of X is a linear 

combination of the others. 
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A proof of this theorem, which is of fundamental importance in many 

applications, can be given by mimicking the proof above for the case of 

a single "independent variable" x.  If the Y's have normal distribu- 

tions, then the b 's are the UMVU estimators of the ß *s and y    is 

the UMVU estimator of v.  In this case, the residual sum of squares 

SS , obtained by substituting the b.fs for the ß fs in SS above, 
e ^22^ 

is independent of the b fs, and SS /a ~X (n_p) •  Whether the Y's 

are normally distributed or not, the estimator SS /(n-p)  is unbiased 
2 e 

for a  • 

Exercises.  1.  Suppose Y , Y?,..., Y  are i.i.d. random variables 

with mean  ß and variance a  .  Show that the least-squares estimator 
_ — 2 

of ß  is  ß » Y and the residual sum of squares is SS - £(Y - Y) . e     x 
2. Consider the problem of comparing the means  ß., ß2,...,ß 

of I populations on the basis of independent random samples of sizes 

n. , n?,..., n  from the respective populations. Let Y..  denote the 
Eh th 

J  observation from the i  population.  Assuming that the observations 

Y   have the same variance, show that the least-squares estimators of 

the means are ß. - Y  where Y.  is the sample mean of the observations 

in the i  group.  Also, show that the BLUE of any linear combination of 
— 2  2 

the means,  Ec ß , is Ec.Y.  and find its variance. Ans.  a Ec. /n.. 

3. Consider the same situation as in Exercise 2 except that 

E(Y..) * ß. + yzi*    where the values z..  are known constants.  Show 

that the least-squares estimators of the parameters are 

Y - Z  (z  - ¥t)Y / E (z  - 7 )2 

l.J  J      X3 i.j  J 

and 

K ■ 7i - >v 
Also, show that the variances of these estimators are given by 

Var(v) - <j2/L(z^   - z±)2, 

n2 

E(2
i] - 'i>2 






